Skip to main content

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1289 Accesses

Abstract

The year 2017 will mark the 200th anniversary of the 1817 publication of James Parkinson’s monograph “An Essay on the Shaking Palsy.” In his monograph, Parkinson described six individuals suffering from a condition involving a bent posture, involuntary tremulous motion and weakened muscular action. Today, Parkinson’s disease (PD) in its various forms is recognized as the second most prevalent neurodegenerative disorder. It has an incidence rate of 1% for individuals age 65 and older and that rate increases to 5% for people past the age of 85.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Environmental Toxins

  • Betarbet, R., Canet-Aviles, R. M., Sherer, T. B., Mastroberardino, P. G., McLendon, C., Kim, J. H., et al. (2006). Intersecting pathways to neurodegeneration in Parkinson’s disease: Effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin-proteasome system. Neurobiology of Disease, 22, 404–420.

    Article  CAS  PubMed  Google Scholar 

  • Costello, S., Cockburn, M., Bronstein, J., Zhang, X., & Ritz, B. (2009). Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the Central Valley of California. American Journal of Epidemiology, 169, 919–926.

    Article  PubMed Central  PubMed  Google Scholar 

  • McCormack, A. L., Thiruchelvam, M., Manning-Bog, A. B., Thiffault, C., Langston, J. W., Cory-Slechta, D. A., et al. (2002). Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiology of Disease, 10, 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., et al. (2011). Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives, 119, 866–872.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Discovery of α-Synuclein and Its Connection to PD

  • Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., et al. (2004). α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 364, 1167–1169.

    Article  CAS  PubMed  Google Scholar 

  • Maraganore, D. M., de Andrade, M., Elbaz, A., Farrer, M. J., Ionnidis, J. P., Krüger, R., et al. (2006). Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease. JAMA, 296, 661–670.

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., et al. (2003). α-Synuclein triplication causes Parkinson’s disease. Science, 302, 841.

    Article  CAS  PubMed  Google Scholar 

  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., & Goedert, M. (1998). α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 95, 6469–6473.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M. Y., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). α-Synuclein in Lewy bodies. Nature, 388, 839–840.

    Article  CAS  PubMed  Google Scholar 

Physiology of SNc Neurons

  • Matsuda, W., Furuta, T., Nakamura, K. C., Hioki, H., Fujiyama, F., Arai, R., et al. (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. The Journal of Neuroscience, 29, 444–453.

    Article  CAS  PubMed  Google Scholar 

  • Puopolo, M., Ravoila, E., & Bean, B. P. (2007). Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. The Journal of Neuroscience, 27, 645–656.

    Article  CAS  PubMed  Google Scholar 

  • Surmeier, D. J., Guzman, J. N., & Sánchez-Padilla, J. (2010). Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium, 47, 175–182.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Dopaminergic Modulation of Synaptic Transmission

Biophysical Properties of α-Synuclein

  • Davidson, W. S., Jonas, A., Clayton, D. F., & George, J. M. (1998). Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. The Journal of Biological Chemistry, 273, 9443–9449.

    Article  CAS  PubMed  Google Scholar 

  • Eliezer, D., Kutluay, E., Bussell, R., Jr., & Browne, G. (2001). Conformational properties of α-synuclein in its free and lipid-associated states. Journal of Molecular Biology, 307, 1061–1073.

    Article  CAS  PubMed  Google Scholar 

  • Ferreon, A. C. M., Gambin, Y., Lemke, E. A., & Deniz, A. A. (2009). Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 106, 5645–5650.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fortin, D. L., Troyer, M. D., Nakamura, K., Kubo, S. I., Anthony, M. D., & Edwards, R. H. (2004). Lipid rafts mediate the synaptic localization of α-synuclein. The Journal of Neuroscience, 24, 6715–6723.

    Article  CAS  PubMed  Google Scholar 

  • Jo, E., McLaurin, J. A., Yip, C. M., St. George-Hyslop, P., & Fraser, P. E. (2000). α-Synuclein membrane interactions and lipid specificity. The Journal of Biological Chemistry, 275, 34328–34334.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, E. R., & Rhoades, E. (2010). Effect of curvature and composition on α-synuclein binding to lipid vesicles. Biophysical Journal, 99, 2279–2288.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solanki, A., Neupane, K., & Woodside, M. T. (2014). Single-molecule force spectroscopy of rapidly fluctuating, marginally stable structures in the intrinsically disordered protein α-synuclein. Physical Review Letters, 112, 158103.

    Article  PubMed  CAS  Google Scholar 

  • Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R., & Hell, S. W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 320, 246–249.

    Article  CAS  PubMed  Google Scholar 

Presynaptic Functions of α-Synuclein

  • Burré, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M. R., & Südhof, T. C. (2010). α-Synuclein promotes SNARE complex assembly in vivo and in vitro. Science, 329, 1663–1667.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chandra, S., Gallardo, G., Fernánsez-Chacón, R., Schlüter, O. M., & Südhof, T. C. (2005). α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell, 123, 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, A. A., Gitler, A. D., Cashikar, A., Haynes, C. M., Hill, K. J., Bhullar, B., et al. (2006). α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science, 313, 324–328.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gitler, A. D., Bevis, B. J., Shorter, J., Strathearn, K. E., Hamamichi, S., Su, L. J., et al. (2008). The Parkinson’s disease protein α-synuclein disrupts cellular Rab homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 105, 145–150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nemani, V. M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M. K., et al. (2010). Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron, 65, 66–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Toxic Oligomers

  • Cremades, N., Cohen, S. I. A., Deas, E., Abramov, A. Y., Chen, A. Y., Orte, A., et al. (2012). Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell, 149, 1048–1059.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winner, B., Jappelli, R., Maji, S. K., Desplats, P. A., Boyer, L., Aigner, S., et al. (2011). In vivo demonstration that α-synuclein oligomers are toxic. Proceedings of the National Academy of Sciences of the United States of America, 108, 4194–4199.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

LRRK2 Structure, Function and Localization

  • Alegre-Abarrategui, J., Christian, H., Lufino, M. M. P., Mutihac, R., Venda, L. L., Ansorge, O., et al. (2009). LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Human Molecular Genetics, 18, 4022–4034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beilina, A., Rudenko, I. N., Kaganovich, A., Civiero, L., Chau, H., Kalia, S. K., et al. (2014). Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 111, 2626–2631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biskup, S., Moore, D. J., Celsi, F., Higashi, S., West, A. B., Andrabi, S. A., et al. (2006). Localization of LRRK2 to membranes and vesicular structures in mammalian brain. Annals of Neurology, 60, 557–569.

    Article  CAS  PubMed  Google Scholar 

  • Mata, I. F., Wedemeyer, W. J., Farrer, M. J., Taylor, J. P., & Gallo, K. A. (2006). LRRK2 in Parkinson’s disease: Protein domains and functional insights. Trends in Neurosciences, 29, 286–293.

    Article  CAS  PubMed  Google Scholar 

  • Paisán-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simón, J., van der Brug, M., et al. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 44, 595–600.

    Article  PubMed  Google Scholar 

  • Piccoli, G., Condliffe, S. B., Bauer, M., Giesert, F., Boldt, K., De Astis, S., et al. (2011). LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. The Journal of Neuroscience, 31, 2225–2237.

    Article  CAS  PubMed  Google Scholar 

  • Zinprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., et al. (2004). Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron, 44, 601–607.

    Article  Google Scholar 

LRRK2 and Chaperone-Mediated Autophagy

  • Cuervo, A. M., & Dice, J. F. (1996). A receptor for the selective uptake and degradation of protein by lysosomes. Science, 273, 501–503.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, R. J., Dzamko, N., Morrice, N. A., Campbell, D. G., Deak, M., Ordureau, A., et al. (2010). 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. The Biochemical Journal, 430, 393–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orenstein, S. J., Kuo, S. H., Tasset, I., Arias, E., Koga, H., Fernandez-Carasa, I., et al. (2013). Interplay of LRRK2 with chaperone-mediated autophagy. Nature Neuroscience, 16, 394–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tong, Y., Yamaguchi, H., Giaime, E., Boyle, S., Kopan, R., Kelleher, R. J., III, et al. (2010). Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 9879–9884.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, Q., She, H., Gearing, M., Colla, E., Lee, M., Shacka, J. J., et al. (2009). Regulation of neuronal survival factor MEF2D by chaperonemediated autophagy. Science, 323, 124–127.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

The PINK1-Parkin Pathway

  • Chen, Y., & Dorn, G. W., II. (2013). PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria. Science, 340, 471–475.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clark, I. E., Dodson, M. W., Jiang, C., Cao, J. H., Huh, J. R., Seol, J. H., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441, 1162–1166.

    Article  CAS  PubMed  Google Scholar 

  • Greene, A. W., Grenier, K., Aguileta, M. A., Muise, S., Farazifard, R., Haque, M. E., et al. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and parkin recruitment. EMBO Reports, 13, 378–385.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin, S. M., Lazarou, M., Wang, C., Kane, L. A., Narendra, D. P., & Youle, R. J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. The Journal of Cell Biology, 191, 933–942.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazlauskaite, A., Kondapalli, C., Gourlay, R., Campbell, D. G., Ritorto, M. S., Hoffman, K., et al. (2014). Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser. The Biochemical Journal, 460, 127–139.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–608.

    Article  CAS  PubMed  Google Scholar 

  • Lazarou, M., Jin, S. M., Kane, L. A., & Youle, R. J. (2012). Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin. Developmental Cell, 22, 320–333.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology, 183, 795–803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park, J., Lee, S. B., Lee, S., Kim, Y., Song, S., Kim, S., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 441, 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  • Poole, A. C., Thomas, R. E., Andrews, L. A., McBride, H. M., Whitworth, A. J., & Pallanck, L. J. (2008). The PINK1/parkin pathway regulates mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America, 105, 1638–1643.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158–1160.

    Article  CAS  PubMed  Google Scholar 

  • Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R. L. A., Kim, J., et al. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 107, 378–383.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Parkin’s UPS/Mitophagic Actions

  • Chan, N. C., Salazar, A. M., Pham, A. H., Sweredoski, M. J., Kolawa, N. J., Graham, R. L. J., et al. (2011). Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Human Molecular Genetics, 20, 1726–1737.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J., & Baloh, R. H. (2010). Mitofusion 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. The Journal of Neuroscience, 30, 4232–4240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y. L., Selkoe, D., et al. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 147, 893–906.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshii, S. R., Kishi, C., Ishihara, N., & Mizushima, N. (2011). Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. The Journal of Biological Chemistry, 286, 19630–19640.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ziviani, E., Tao, R. N., & Whitworth, A. J. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusions. Proceedings of the National Academy of Sciences of the United States of America, 107, 5018–5023.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Neuroprotective Actions Independent of Mitophagy

  • Lee, Y., Karuppagounder, S. S., Shin, J. H., Lee, Y. I., Ko, H. S., Swing, D., et al. (2013). Parthanatos mediates AIMP2 activated age dependent dopaminergic neuronal loss. Nature Neuroscience, 16, 1392–1400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M., & Fon, E. A. (2014). Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. The EMBO Journal, 33, 282–295.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Müller-Rischart, A. K., Pilsl, A., Beaudette, P., Patra, M., Hadian, K., Funke, M., et al. (2013). The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Molecular Cell, 49, 908–921.

    Article  PubMed  CAS  Google Scholar 

  • Shin, J. H., Ko, H. S., Kang, H., Lee, Y., Lee, Y. I., Pletinkova, O., et al. (2011). PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell, 144, 689–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

DJ-1 Mutations and Oxidation

  • Blackinton, J., Lakshminarasimhan, M., Thomas, K. J., Ahmad, R., Greggio, E., Raza, A. S., et al. (2009). Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. The Journal of Biological Chemistry, 284, 6476–6485.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E., et al. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256–259.

    Article  CAS  PubMed  Google Scholar 

  • Canet-Avilés, R. M., Wilson, M. A., Miller, D. W., Ahmad, R., McLendon, C., Bandyopadhyay, S., et al. (2004). The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences of the United States of America, 101, 9103–9108.

    Article  PubMed Central  PubMed  Google Scholar 

  • Irrcher, I., Aleyasin, H., Seifert, E. L., Hewitt, S. J., Chhabra, S., Phillips, M., et al. (2010). Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Human Molecular Genetics, 19, 3734–3746.

    Article  CAS  PubMed  Google Scholar 

  • Krebiehl, G., Ruckerbauer, S., Burbulla, L. F., Kieper, N., Maurer, B., Waak, J., et al. (2010). Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS ONE, 5, e9367.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raturi, A., & Simmen, T. (2013). Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondrial-associated membrane. Biochimica et Biophysica Acta, 1833, 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, K. J., McCoy, M. K., Blackinton, J., Beilina, A., van der Brug, M., Sandebring, A., et al. (2011). DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Human Molecular Genetics, 20, 40–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Emerging Genetic Risk Factors

  • Burchell, V. S., Nelson, D. E., Sanchez-Martinez, A., Delgado-Camprubi, M., Ivatt, R. M., Pogson, J. H., et al. (2013). The Parkinson’s disease genes Fbxo7 and parkin interact to mediate mitophagy. Nature Neuroscience, 16, 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  • Cullen, V., Sardi, S. P., Ng, J., Xu, Y. H., Sun, Y., Tomlinson, J. J., et al. (2011). Acid β-glucosidase mutants linked to Gaucher disease, Parkinson’s disease, and Lewy body dementia alter α-synuclein processing. Annals of Neurology, 69, 940–953.

    Article  CAS  PubMed  Google Scholar 

  • Dehay, B., Ramirez, A., Martinez-Vicente, M., Perier, C., Canron, M. H., Doudnikoff, E., et al. (2012). Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 109, 9611–9616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gitler, A. D., Chesi, A., Geddie, M. L., Strathearn, K. E., Hamamichi, S., Hill, K. J., et al. (2009). α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature Genetics, 41, 308–315.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gregory, A., Westaway, S. K., Holm, I. E., Kotzbauer, P. T., Hogarth, P., Sonek, S., et al. (2008). Neurodegeneration associated with genetic defects in phospholipase A. Neurology, 71, 1402–1409.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kabuta, T., Furuta, A., Aoki, S., Furuta, K., & Wada, K. (2008). Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. The Journal of Biological Chemistry, 283, 23731–23738.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong, S. M. Y., Chan, B. K. K., Park, J. S., Hill, K. J., Aitken, J. B., Cottle, L., et al. (2014). Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-synuclein externalization via exosomes. Human Molecular Genetics, 23, 2816–2833.

    Article  CAS  PubMed  Google Scholar 

  • Mazzulli, J. R., Xu, Y. H., Sun, Y., Knight, A. L., Mclean, P. J., Caldwell, G. A., et al. (2011). Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell, 146, 37–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan, N. V., Westaway, S. K., Morton, J. E. V., Gregory, A., Gissen, P., Sonek, S., et al. (2006). PLA2G6, encoding a phospholipase A, is mutated in neurodegenerative disorders with high brain iron. Nature Genetics, 7, 752–754.

    Article  CAS  Google Scholar 

  • Park, J. S., Koentjoro, B., Velvers, D., Mackay-Sim, A., & Sue, C. M. (2014). Parkinson’s disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction. Human Molecular Genetics, 23, 2802–2815.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plum-Favreau, H., Klupsch, K., Moisoi, N., Gandhi, S., Kjaer, S., Frith, D., et al. (2007). The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nature Cell Biology, 9, 1243–1252.

    Article  CAS  Google Scholar 

  • Whitworth, A. J., Lee, J. R., Ho, V. M. W., Flick, R., Chowdhury, R., & McQuibban, G. A. (2008). Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors PINK1 and parkin. Disease Models & Mechanisms, 1, 168–174.

    Article  CAS  Google Scholar 

Nitric Oxide Signaling Discovered

  • Arnold, W. P., Mittal, C. K., Katsuki, S., & Murad, F. (1977). Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proceedings of the National Academy of Sciences of the United States of America, 74, 3203–3207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373–376.

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite, J., Chalres, S. L., & Chess-Williams, R. (1988). Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature, 336, 385–388.

    Article  CAS  PubMed  Google Scholar 

  • Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84, 9265–9269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer, R. M. J., Ashton, D. S., & Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature, 333, 664–666.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, R. M., Ferrige, A. G., & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524–526.

    Article  CAS  PubMed  Google Scholar 

Neuroprotective and Neurodestructive Actions of Nitric Oxide and Other Stress Factors

  • Chung, K. K. K., Thomas, B., Li, X., Pletnikova, O., Troncoso, J. C., Marsh, L., et al. (2004). S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science, 304, 1328–1331.

    Article  CAS  PubMed  Google Scholar 

  • LaVoie, M. J., Ostaszewski, B. L., Weihofen, A., Schlossmacher, M. G., & Selkoe, D. J. (2005). Dopamine covalently modifies and functionally inactivates parkin. Nature Medicine, 11, 1214–1221.

    Article  CAS  PubMed  Google Scholar 

  • Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S. V., Sucher, N. J., et al. (1993). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature, 364, 626–632.

    Article  CAS  PubMed  Google Scholar 

  • Mosharov, E. V., Larsen, K. E., Kanter, E., Phillips, K. A., Wilson, K., Schmitz, Y., et al. (2009). Interplay between cytosolic dopamine, calcium, and α-synuclein causes selective death of substantia nigra neurons. Neuron, 62, 218–229.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palacino, J. J., Sagi, D., Goldberg, M. S., Krauss, S., Motz, C., Wacker, M., et al. (2004). Mitochondrial dysfunction and oxidative damage in parkindeficient mice. The Journal of Biological Chemistry, 279, 18614–18622.

    Article  CAS  PubMed  Google Scholar 

  • Uehara, T., Nakamura, T., Yao, D., Shi, Z. Q., Gu, Z., Ma, Y., et al. (2006). S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441, 513–517.

    Article  CAS  PubMed  Google Scholar 

  • Yao, D., Gu, Z., Nakamura, T., Shi, Z. Q., Ma, Y., Gaston, B., et al. (2004). Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proceedings of the National Academy of Sciences of the United States of America, 101, 10810–10814.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Chronic Inflammation and iNOS

  • Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., & Liu, B. (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: Relevance to Parkinson’s disease. Journal of Neurochemistry, 81, 1285–1297.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H. J., Suk, J. E., Patrick, C., Bae, E. J., Cho, J. H., Rho, S., et al. (2010). Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. The Journal of Biological Chemistry, 285, 9262–9272.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liberatore, G. T., Jackson-Lewis, V., Vukosavic, S., Mandir, A. S., Vila, M., McAuliffe, W. G., et al. (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nature Medicine, 5, 1403–1409.

    Article  CAS  PubMed  Google Scholar 

  • McGeer, P. L., Itagaki, S., Boyes, B. E., & McGeer, E. G. (1988). Reactive microglia and positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology, 38, 1285–1291.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Wang, T., Pei, Z., Miller, D. S., Wu, Z., Block, M. L., et al. (2005). Aggregated α-synuclein activated microglia: A process leading to disease progression in Parkinson’s disease. The FASEB Journal, 19, 533–542.

    Article  CAS  PubMed  Google Scholar 

Exosomes and Cell-to-Cell Spread

  • Desplats, P., Lee, H. J., Bae, E. J., Patrick, C., Rockenstein, E., Crews, L., et al. (2009). Inclusion formation and neuronal cell death through neuronto-neuron transmission of α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 106, 13010–13015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emmanouilidou, E., Melachroinou, K., Roumeliotis, T., Garbis, S. D., Ntzouni, M., Marqaritis, L. H., et al. (2010). Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. The Journal of Neuroscience, 30, 6838–6851.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hansen, C., Angot, E., Bergström, A. L., Steiner, J. A., Pieri, L., Paul, G., et al. (2011). α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. The Journal of Clinical Investigation, 121, 715–725.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harding, C., Hauser, J., & Stahl, P. (1983). Receptor-mediated endosytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. The Journal of Cell Biology, 97, 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Luk, K. C., Kehm, V. M., Zhang, B., O’Brien, P., Trojanowski, J. Q., & Lee, V. M. Y. (2011). Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. The Journal of Experimental Medicine, 209, 975–986.

    Article  CAS  Google Scholar 

  • Pan, B. T., & Johnstone, R. M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell, 33, 967–978.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beckerman, M. (2015). Parkinson’s Disease. In: Fundamentals of Neurodegeneration and Protein Misfolding Disorders. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-22117-5_9

Download citation

Publish with us

Policies and ethics