Skip to main content

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1306 Accesses

Abstract

In thinking about how a protein might look in its three-dimensional fully folded form, Hsien Wu had envisioned it as forming a crystalline solid composed of repeated folded structural elements. That hope for simplicity by him and everyone else was effectively dashed by the pioneering studies of Kendrew and Perutz. Studies carried out later by Frederic Richards (1925–2009) [who solved the third ever protein structure in 1967, that of ribonuclease S] and others on packing densities confirmed part of Wu’s depiction. There were few if any large voids in the protein interior, and the overall protein densities were indeed consistent with that of an organic compound in the crystalline state, but one without repeating regularities. However, when examined at a finer scale it turns out that the interiors are quite variable in their packing and do not resemble a tightly fit-together jigsaw puzzle so much as a randomly packed sets of nuts and bolts. The packing is; in fact, loose enough to permit a variety of movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Motions of Proteins

  • Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H., & Gunsalus, I. C. (1975). Dynamics of ligand binding to myoglobin. Biochemistry, 14, 5355–5373.

    Article  CAS  PubMed  Google Scholar 

  • Frauenfelder, H., Sligar, S. G., & Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science, 254, 1598–1603.

    Article  CAS  PubMed  Google Scholar 

  • Henzler-Wildman, K., & Kern, D. (2007). Dynamic personalities of proteins. Nature, 450, 964–972.

    Article  CAS  PubMed  Google Scholar 

  • Weber, G. (1972). Ligand binding and internal equilibria in proteins. Biochemistry, 11, 864–878.

    Article  CAS  PubMed  Google Scholar 

Protein Dynamics, Solvent Slaving, and the Glass-Transition

  • Adair, G. S., & Adair, M. E. (1936). The densities of protein crystals and the hydration of proteins. Proceedings of the Royal Society B, 120, 422–446.

    Article  CAS  Google Scholar 

  • Bernal, J. D., & Crowfoot, D. (1934). X-ray photographs of crystalline pepsin. Nature, 133, 794–795.

    Article  CAS  Google Scholar 

  • Chick, H., & Martin, C. J. (1913). The density and solution volume of some proteins. The Biochemical Journal, 7, 92–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fenimore, P. W., Frauenfelder, H., McMahon, B. H., & Parak, F. G. (2002). Slaving: Solvent fluctuations dominate protein dynamics and function. Proceedings of the National Academy of Sciences of the United States of America, 99, 16047–16051.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frauenfelder, H., Chen, G., Berendzen, J., Fenimore, P. W., Jansson, H., McMahon, B. H., et al. (2009). A unified model of protein dynamics. Proceedings of the National Academy of Sciences of the United States of America, 106, 5129–5134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen, B. F., Stock, A. M., Ringe, D., & Petsko, G. A. (1992). Crystalline ribonucleaese A loses function below the dynamical transition at 220 K. Nature, 357, 423–424.

    Article  CAS  PubMed  Google Scholar 

  • Ringe, D., & Petsko, G. A. (2003). The ‘glass transition’ in protein dynamics: What it is, why it occurs, and how to exploit it. Biophysical Chemistry, 105, 667–680.

    Article  CAS  PubMed  Google Scholar 

Energy Landscape Picture

  • Bryngelson, J. D., Onuchic, J. N., Socci, N. D., & Wolynes, P. G. (1995). Funnels, pathways and the energy landscape of protein folding: A synthesis. Proteins, 21, 167–195.

    Article  CAS  PubMed  Google Scholar 

  • Bryngelson, J. D., & Wolynes, P. G. (1987). Spin glasses and the statistical mechanics of protein folding. Proceedings of the National Academy of Sciences of the United States of America, 84, 7524–7528.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dill, K. A., & Chan, H. S. (1997). From Levinthal to pathways to funnels. Nature Structural Biology, 4, 10–19.

    Article  CAS  PubMed  Google Scholar 

  • Leopold, P. E., Montal, M., & Onuchic, J. N. (1992). Protein folding funnels: A kinetic approach to the sequence-structure relationship. Proceedings of the National Academy of Sciences of the United States of America, 89, 8721–8725.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Metastability

  • Jaswal, S. S., Sohl, J. L., Davis, J. H., & Agard, D. A. (2002). Energetic landscape of α-lytic protease optimizes longevity through kinetic stability. Nature, 415, 343–346.

    Article  CAS  PubMed  Google Scholar 

  • Jaswal, S. S., Truhlar, S. M. E., Dill, K. A., & Agard, D. A. (2005). Comprehensive analysis of protein folding activation thermodynamics reveals a universal behavior violated by kinetically stable proteases. Journal of Molecular Biology, 347, 355–366.

    Article  CAS  PubMed  Google Scholar 

  • Lomas, D. A., & Mahadeva, R. (2002). α1-Antitrypsin polymerization and the serpinopathies: Pathobiology and prospects for therapy. The Journal of Clinical Investigation, 110, 1585–1590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whisstock, J. C., & Bottomley, S. P. (2006). Molecular gymnastics: Serpin structure, folding and misfolding. Current Opinion in Structural Biology, 16, 761–768.

    Article  CAS  PubMed  Google Scholar 

Spin Glasses

  • Binder, K., & Young, A. P. (1986). Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics, 58, 801–976.

    Article  CAS  Google Scholar 

Molecular Mechanics

  • Boas, F. E., & Harbury, P. B. (2007). Potential energy functions for protein design. Current Opinion in Structural Biology, 17, 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaninathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamic calculations. Journal of Computational Chemistry, 4, 187–217.

    Article  CAS  Google Scholar 

  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Jr., Ferguson, D. M., et al. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179–5197.

    Article  CAS  Google Scholar 

  • Schueler-Forman, O., Wang, C., Bradley, P., Misura, K., & Baker, D. (2005). Progress in modeling of protein structures and interactions. Science, 310, 638–642.

    Article  Google Scholar 

Recognition and Binding

  • Boehr, D. D., Nussinov, R., & Wright, P. E. (2009). The role of dynamic conformational ensembles in biomolecular recognition. Nature Chemical Biology, 5, 789–796.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Csermely, P., Palotai, R., & Nussinov, R. (2010). Induced fit, conformational selection and independent dynamic segments: An extended view of binding events. Trends in Biochemical Sciences, 35, 539–546.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer, E. (1894). Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der Deutschen Chemischen Gesellschaft, 27, 2984–2993.

    Google Scholar 

  • Koshland, D. E., Jr. (1958). Application of a theory of enzyme specificity to protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 44, 98–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma, B., Kumar, S., Tsai, C. J., & Nussinov, R. (1999). Folding funnels and binding mechanisms. Protein Engineering, 12, 713–720.

    Article  CAS  PubMed  Google Scholar 

  • Tokuriki, N., & Tawfik, D. S. (2009). Protein dynamism and evolvability. Science, 324, 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, C. J., Kumar, S., Ma, B., & Nussinov, R. (1999). Folding funnels, binding funnels, and protein function. Protein Science, 8, 1181–1190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Enzyme Catalysis

  • Boehr, D. D., McElheny, D., Dyson, H. J., & Wright, P. E. (2006). The dynamic energy landscape of dihydrofolate reductase catalysis. Science, 313, 1638–1642.

    Article  CAS  PubMed  Google Scholar 

  • Eisenmesser, E. Z., Millet, O., Labeikovsky, W., Korzhnev, D. M., Wolf-Watz, M., Bosco, D. A., et al. (2005). Intrinsic dynamics of an enzyme underlies catalysis. Nature, 438, 117–121.

    Article  CAS  PubMed  Google Scholar 

  • Henzler-Wildman, K. A., Thai, V., Lei, M., Ott, M., Wolf-Watz, M., Fenn, T., et al. (2007). Intrinsic motions along an enzymatic reaction trajectory. Nature, 450, 838–844.

    Article  CAS  PubMed  Google Scholar 

Allostery and Conformational Entropy

  • Ferreon, A. C. M., Ferreon, J. C., Wright, P. E., & Deniz, A. A. (2013). Modulation of allostery by protein intrinsic disorder. Nature, 498, 390–394.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frederick, K. K., Marlow, M. S., Valentine, K. G., & Wand, A. J. (2007). Conformational entropy in molecular recognition by proteins. Nature, 448, 325–329.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hilser, V. J., & Thompson, E. B. (2007). Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proceedings of the National Academy of Sciences of the United States of America, 104, 8311–8315.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koshland, D. E., Jr., Némethy, G., & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, 5, 365–385.

    Article  CAS  PubMed  Google Scholar 

  • Monod, J., Wyman, J., & Changeux, J. P. (1965). On the nature of allosteric transitions: A plausible model. Journal of Molecular Biology, 12, 88–118.

    Article  CAS  PubMed  Google Scholar 

  • Motlagh, H. N., Wrabi, J. O., Li, J., & Hilser, V. J. (2014). The ensemble nature of allostery. Nature, 508, 331–339.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nussinov, R., & Tsai, C. J. (2013). Allostery in disease and in drug discovery. Cell, 153, 293–305.

    Article  CAS  PubMed  Google Scholar 

  • Tzeng, S. R., & Kalodimos, C. G. (2012). Protein activity regulated by conformational entropy. Nature, 488, 236–240.

    Article  CAS  PubMed  Google Scholar 

Molecular Dynamics

  • Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106, 1589–1615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alder, B. J., & Wainwright, T. E. (1959). Studies in molecular dynamics: I. General methods. The Journal of Chemical Physics, 31, 459–466.

    Article  CAS  Google Scholar 

  • Chodera, J. D., Singhal, N., Pande, V. S., Dill, K. A., & Swope, W. C. (2007). Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. The Journal of Chemical Physics 126: art. 155101.

    Google Scholar 

  • Dinner, A. R., Šali, A., Smith, L. J., Dobson, C. M., & Karplus, M. (2000). Understanding protein folding via free-energy surfaces from theory and experiment. Trends in Biochemical Sciences, 25, 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Freddolino, P. L., Harrison, C. B., Liu, Y., & Schulten, K. (2010). Challenges in protein folding timescale, representation, and analysis. Nature Physics, 6, 751–758.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gō, N. (1983). Theoretical studies of protein folding. Annual Review of Biophysics and Bioengineering, 12, 183–210.

    Article  PubMed  Google Scholar 

  • Kohlhoff, K. J., Shukla, D., Lawrenz, M., Bowman, G. R., Konerding, D. E., Belov, D., et al. (2014). Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nature Chemistry, 6, 15–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubelka, J., Hofrichter, J., & Eaton, W. A. (2004). The protein folding ‘speed limit’. Current Opinion in Structural Biology, 14, 76–88.

    Article  CAS  PubMed  Google Scholar 

  • Levitt, M., & Warshal, A. (1975). Computer simulation of protein folding. Nature, 253, 694–698.

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen, K., Piana, S., Dror, R. O., & Shaw, D. E. (2011). How fast-folding proteins fold. Science, 334, 517–520.

    Article  CAS  PubMed  Google Scholar 

  • McCammon, J. A., Gelin, B. R., & Karplus, M. (1977). Dynamics of folded proteins. Nature, 267, 585–590.

    Article  CAS  PubMed  Google Scholar 

  • Noé, F., Schütte, C., Vanden-Eijnden, E., Reich, L., & Weikl, T. R. (2009). Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proceedings of the National Academy of Sciences of the United States of America, 106, 19011–19016.

    Article  PubMed Central  PubMed  Google Scholar 

  • Piana, S., Lindorff-Larsen, K., & Shaw, D. E. (2013). Atomic level description of ubiquitin folding. Proceedings of the National Academy of Sciences of the United States of America, 110, 5915–5920.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman, A. (1964). Correlations in the motions of atoms in liquid argon. Physical Review A, 136, 405–411.

    Article  CAS  Google Scholar 

  • Rahman, A., & Stillinger, F. H. (1971). Molecular dynamics study of liquid water. The Journal of Chemical Physics, 55, 3336–3359.

    Article  CAS  Google Scholar 

  • Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., et al. (2010). Atomic-level characterization of the structural dynamics of proteins. Science, 330, 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Voelz, V. A., Bowman, G. R., Beauchamp, K., & Pande, V. S. (2010). Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1–39). Journal of the American Chemical Society, 132, 1526–1528.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Langevin Dynamics

  • Einstein, A. (1905). Über die von der molekular-kinetischen Theorie der Wärmer geforderte Bewegung von der ruhenden Flüssigkeiten suspenierten Teilchen. Annals of Physics (Leipzig), Series 4, 17, 549–560.

    Article  CAS  Google Scholar 

  • Langevin, P. (1908). Sur la théorie du mouvement brownien. Comptes Rendus de l'Académie des Sciences (Paris), 146, 530–533.

    CAS  Google Scholar 

  • Perrin, J. (1909). Mouvement brownien et réalité moléculaire. Anneles de Chemie et de Physique, Series 8, 18, 1–114.

    Google Scholar 

Monte Carlo Methods

  • Cerny, V. (1985). Thermodynamic approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45, 41–51.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21, 1087–1092.

    Article  CAS  Google Scholar 

  • Ulan, S. M., & von Neumann, J. (1947). On combination of stochastic and deterministic processes. Bulletin of the American Mathematical Society, 53, 1120.

    Google Scholar 

Nuclear Magnetic Resonance

  • Arnold, J. T., Dharmatti, S. S., & Packard, M. E. (1951). Chemical effects on nuclear induction signals from organic compounds. The Journal of Chemical Physics, 19, 507.

    Article  CAS  Google Scholar 

  • Aue, W. P., Bertholdi, E., & Ernst, R. R. (1976). Two dimensional spectroscopy: Application to nuclear magnetic resonance. The Journal of Chemical Physics, 64, 2229–2246.

    Article  CAS  Google Scholar 

  • Block, F., Hansen, W. W., & Packard, M. (1946). Nuclear induction. Physics Review, 69, 127.

    Article  Google Scholar 

  • Gutowsky, H. S., McCall, D. W., & Slichter, C. P. (1953). Nuclear magnetic resonance multiplets in liquids. The Journal of Chemical Physics, 21, 279–292.

    Article  CAS  Google Scholar 

  • Lauterbur, P. C. (1973). Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature, 242, 190–191.

    Article  CAS  Google Scholar 

  • Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87, 9868–9872.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 89, 5951–5955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Proctor, W. G., & Yu, F. C. (1950). The dependence of a nuclear magnetic resonance frequency upon chemical compound. Physics Review, 77, 717.

    Article  CAS  Google Scholar 

  • Purcell, E. M., Torrey, H. C., & Pound, R. V. (1946). Resonance absorption by nuclear magnetic moments in a solid. Physics Review, 69, 37–38.

    Article  CAS  Google Scholar 

  • Williamson, M. P., Havel, T. F., & Wüthrich, K. (1985). Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. Journal of Molecular Biology, 182, 295–315.

    Article  CAS  PubMed  Google Scholar 

Mass Spectrometry

  • Benesch, J. L. P., & Ruotolo, B. T. (2011). Mass spectrometry: Come of age for structural and dynamic biology. Current Opinion in Structural Biology, 21, 641–649.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernstein, S. L., Dupuis, N. F., Lazo, N. D., Wyttenbach, T., Condron, M. M., Bitan, G., et al. (2009). Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nature Chemistry, 1, 326–331.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Hydrogen-Deuterium Exchange

  • Englander, S. W., & Kallenbach, N. R. (1984). Hydrogen exchange and structural dynamics of proteins and nucleic acids. Quarterly Reviews of Biophysics, 16, 521–655.

    Article  Google Scholar 

  • Hvidt, A., & Nielsen, S. O. (1966). Hydrogen exchange in proteins. Advances in Protein Chemistry, 21, 288–386.

    Google Scholar 

  • Miller, D. W., & Dill, K. A. (1995). A statistical mechanical model for hydrogen exchange in globular proteins. Protein Science, 4, 1860–1873.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodward, C., Simon, I., & Tüchsen, E. (1982). Hydrogen exchange and the dynamic structure of proteins. Molecular and Cellular Biochemistry, 48, 135–160.

    Article  CAS  PubMed  Google Scholar 

Phi-Value Analysis

  • Fersht, A. R., Matouschek, A., & Serrano, L. (1992). The folding of an enzyme: I. Theory of protein engineering analysis of stability and pathway of protein folding. Journal of Molecular Biology, 224, 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Matouschek, A., Kellis, J. T., Jr., Serrano, L., & Fersht, A. R. (1989). Mapping the transition stte and pathway of protein folding by protein engineering. Nature, 340, 122–126.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beckerman, M. (2015). Protein Folding: Part II—Energy Landscapes and Protein Dynamics. In: Fundamentals of Neurodegeneration and Protein Misfolding Disorders. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-22117-5_3

Download citation

Publish with us

Policies and ethics