Skip to main content

The Internal Logic of Constructive Mathematics

  • Chapter
Towards an Arithmetical Logic

Part of the book series: Studies in Universal Logic ((SUL))

  • 907 Accesses

Abstract

Mathematical constructivism could be summarized by the phrase: “Arithmetical statements proven by analytical means can be proven without them, that is by elementary non-analytical means”. Herbrand expressed the idea clearly in the 1920s. It was repeated recently by H. Friedman, following Avigad (2003). The classical example in this connection is Dirichlet who proved in 1837 the prime number theorem and the theorem on arithmetical progressions by analytical means; the elementary proofs were provided only in 1949 by Selberg and Erdös. A less known example is the 1933 Gel’fond-Schneider theorem for which Gel’fond gave a constructive version in the 1960s. I give here a brief account of the theorem and its foundational implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Avigad (2003): Number Theory and Elementary Arithmetic. Philosophia Mathematica, XI:257–284.

    Google Scholar 

  • A. Baker (1975): Transcendental Number Theory. London, Cambridge, University Press.

    Book  MATH  Google Scholar 

  • E. Bishop (1967): Foundations of Constructive Analysis. New York, McGraw-Hill.

    MATH  Google Scholar 

  • E. Bishop (1970): Mathematics as a Numerical Language. In Intuitionism and Proof Theory, 53–71. North-Holland, Amsterdam and New-York.

    Google Scholar 

  • L.E.J. Brouwer (1975): Collected Works, vol. I. North-Holland, Oxford, Amsterdam.

    Google Scholar 

  • T. Coquand (2008): Herbrand et le programme de Hilbert. Gazette des Mathématiciens, 118:17–28.

    MATH  MathSciNet  Google Scholar 

  • P. de Fermat (1899): Oeuvres, volume II. Gauthier-Villars, Paris.

    Google Scholar 

  • M. Dummett (2000): Elements of Intuitionism. Oxford University Press, Oxford, 2nd édition.

    Google Scholar 

  • Y. Gauthier (1976): Fondements des mathématiques. Introduction à une philosophie constructiviste. P.U.M., Montréal.

    MATH  Google Scholar 

  • Y. Gauthier (1978): Foundational Problems of Number Theory. Notre Dame Journal of Formal Logic, 19:92–100.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Gauthier (1997a): Logique et fondements des mathématiques. Diderot, Paris.

    MATH  Google Scholar 

  • Y. Gauthier (1997b): La logique interne. Modèles et applications. Diderot, Paris.

    Google Scholar 

  • Y. Gauthier (2002): Internal Logic. Foundations of Mathematics from Kronecker to Hilbert. Kluwer, Synthese Library, Dordrecht/Boston/London.

    MATH  Google Scholar 

  • Y. Gauthier (2010): Logique Arithmétique. L’arithmétisation de la logique. Presses de l’Université Laval, Québec.

    Google Scholar 

  • A. O. Gel’fond (1934): Sur le Septième Problème de Hilbert. Comptes Rendus Acad. Sci. URSS Moscou, 2:1–6.

    MathSciNet  Google Scholar 

  • A. O. Gel’fond and U. V. Linnik (1965): Elementary Methods in Analytic Number Theory. Rand McNally and Co.

    Google Scholar 

  • G. Gentzen (1969): Collected Papers. E. Szabo, ed. North-Holland, Amsterdam.

    Google Scholar 

  • J. Herbrand (1968): Écrits logiques. J. van Heijenoort, ed. PUF, Paris.

    Google Scholar 

  • S. C. Kleene and J. Vesley (1965): Foundations of Intuitionistic Mathematics. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • G. Kreisel (1976): What have we learnt from Hilbert’s Second Problem? Mathematical Developments arising from Hilbert’s Problems. Providence, Rhode Island: American Mathematical Society., 93–130.

    Google Scholar 

  • S. Mochizuki: Inter-universal Teichmüller Theory iv. Log-volume Computations and Set-theoretic Foundations. Homepage of S. Mochizuki (2012).

    Google Scholar 

  • G. Peano (1959): Opere scelte, vol. II. Edizione Cremonese, Roma.

    Google Scholar 

  • T. Schneider (1934a): Transzendenzuntersuchungen periodischer Funktionen. J. reine angew. Math., 172:65–69.

    Google Scholar 

  • T. Schneider (1934b): Transzendenzuntersuchungen periodischer Funktionen. ii. J. reine angew. Math., 172:70–74.

    Google Scholar 

  • J.-P. Serre (2009): How to use finite fields for problems concerning infinite fields. Proc. Conf. Marseille-Luminy (2007), Contemporary Math. Series, AMS., 1–12.

    Google Scholar 

  • A. S. Troelstra (1969): Principles of Intuitionism. Numéro 95 de Lectures Notes in Mathematics. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • A. S. Troelstra (1976): Choice Sequences. Clarendon Press, Oxford.

    Google Scholar 

  • A. S. Troelstra (2003): Constructivism and Proof Theory. ILLC, University van Amsterdam.

    Google Scholar 

  • A. S. Troelstra and D.van Dalen (1988): Constructivism in Mathematics. vol. I. North-Holland, Amsterdam.

    Google Scholar 

  • V. Voevodsky (2010): Univalent Foundation Project. (A modified version of an NSF grant application). October 1.

    Google Scholar 

  • A Weil (1941): On the Riemann Hypothesis in Function Fields. Proc. Natl. Acad. Sci. USA, 27:345–347.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Weil (1949): Numbers of solutions of equations in finite fields. Bull. Am. Math. Soc., 55:497–508.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Weil (1984): Number Theory. An Approach through History. From Hammurabi to Legendre. Birkhäuser. Boston-Basel-Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gauthier, Y. (2015). The Internal Logic of Constructive Mathematics. In: Towards an Arithmetical Logic. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-22087-1_6

Download citation

Publish with us

Policies and ethics