Skip to main content

Arithmetical Foundations for Physical Theories

  • Chapter
Towards an Arithmetical Logic

Part of the book series: Studies in Universal Logic ((SUL))

Abstract

The notion of analytical apparatus was introduced in the paper by Hilbert, Nordheim and von Neumann (1928) ≪ Über die Grundlagen der Quantenmechanik ≫ : The analytical apparatus <der analytische Apparat> is simply the mathematical formalism or the set of logico-mathematical structures of a physical theory. Von Neumann used the notion extensively in his 1932 seminal work on the mathematical foundations of Quantum Mechanics and he stressed particularly the auxiliary notion of conditions of reality <Realitätsbedingungen>. I want to show that this last notion corresponds grosso modo to our notion of model in contemporary philosophy of physics. Hermann Weyl, who has initiated group theory in Quantum Mechanics (1928), also exploited the idea in his conception of the parallelism between a mathematical formalism and its physical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I am drawing here parts from various recent papers of mine, especially from three different sources “Hilbert’s idea of physical axiomatics: the analytical apparatus of quantum mechanics” in Journal of Physical Mathematics, Vol. 2 (2010), 1–14, “Hermann Minkowski:From Geometry of Numbers to Physical Geometry”, Chapter 10 in Minkowski Spacetime: A Hundred Years Later, ed. by Vesselin Petkov, Springer, 2010, 247–257 and “A General No-Cloning Theorem for an Infinite Multiverse”, in Reports on Mathematical Physics, Vol. 2 (2013), no. 2, 191–199.

  2. 2.

    Von Neumann’s dogma has been challenged in 1952 by Wick, Wightman and Wigner who introduced superselection rules showing that there exist Hermitian operators that do not correspond to observables; on the other side, Park and Margenau argue that there are observables, for example, the non-commuting x and z—components of spin which are not represented by Hermitian operators.

  3. 3.

    Orthocomplementation requires that \(\left (a^{-}\right )^{-} = a,a^{-}\cap a =\emptyset\) and \(a \leq b \leftrightarrow b^{-}\leq a^{-}\).

References

  • E. Bishop (1967): Foundations of Constructive Analysis. New York, McGraw-Hill.

    MATH  Google Scholar 

  • L. E. J. Brouwer (1910): Beweis der Invarianz der Dimensionenzahl. Math. Annalen, 70:161–165.

    Article  MathSciNet  Google Scholar 

  • L. E. J Brouwer (1912a): Beweis der Invarianz des n-dimensionalen Gebietes. Math. Annalen, 71:305–313.

    Article  MATH  Google Scholar 

  • L. E. J. Brouwer (1912b): Über Abbildungen von Mannigfaltigkeiten. Math, 38(71):97–115.

    Google Scholar 

  • V. Busek and M. Hillery (1996): Quantum Copying: Beyond the No-Cloning Theorem. arXiv:quant-ph/19607018v1.

    Google Scholar 

  • G. Cantor (1966): Über einer Satz aus der Theorie der stetigen Mannigfaltigkeiten. Abhandlungen mathematisch und philosophischen Inhalts, Georg Olms, Hildesheim:134–138.

    Google Scholar 

  • J. Conway and S. Kochen (2006): The free will theorem. Found. Physics, 36:1441–1473.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Conway and S. Kochen (2009): The strong free will theorem. Not. Amer. Math. Soc., 56:226–232.

    MATH  MathSciNet  Google Scholar 

  • D. Diecks (1982): Communication by EPR devices. Phys. Lett. A, 92:271–272.

    Article  Google Scholar 

  • J. Dowker and D. Kent (1996): On the Consistent Histories Approach to Quantum Mechanics. Journal of Statistical Mechanics, 82((5/6)): 1575–1646.

    Google Scholar 

  • Y. Gauthier (1983a): Le constructivisme de Herbrand. Journal of Symbolic Logic, 48(4):1230.

    MathSciNet  Google Scholar 

  • Y. Gauthier (1983b): Quantum Mechanics and the Local Observer. Int. J. Theor, Physics, 72:1141–1152.

    Google Scholar 

  • Y. Gauthier (1985): A Theory of Local Negation. The Model and Some Applications. Archiv für mathematische Logik und Grundlagenforschung, 25:127–143.

    Google Scholar 

  • Y. Gauthier (2002): Internal Logic. Foundations of Mathematics from Kronecker to Hilbert. Kluwer, Synthese Library, Dordrecht/Boston/London.

    MATH  Google Scholar 

  • Y. Gauthier (2005): Hermann Weyl on Minkowskian Space-Time and Riemannian Geometry. International Studies in the Philosophy of Science, 19:262–269.

    Article  MathSciNet  Google Scholar 

  • Y. Gauthier (2009a): The Construction of Chaos Theory. Found. Sci., 14:153–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Gauthier (2009b): Classical Functional Theory and Applied Proof Theory. International Journal of Pure and Applied Mathematics, 56(2): 223–233.

    MATH  MathSciNet  Google Scholar 

  • Y. Gauthier (2013b): A General No-Cloning Theorem for an Infinite Multiverse. Reports in Mathematical Physics, 72:191–199.

    Article  MATH  MathSciNet  Google Scholar 

  • A.M. Gleason (1957): Measures on the Closed Subspaces of a Hilbert Space. Journal of Mathematics and Mechanics, 6:885–893.

    MATH  MathSciNet  Google Scholar 

  • S. Goldstein and D.N. Page (1995): Linearly Positive Histories Probabilities for a Robust Family of Sequences of Quantum Events. Physical Review Letters, 74:19.

    Article  MathSciNet  Google Scholar 

  • R.B. Griffiths (1984): Consistent Histories and the Interpretation of Quantum Mechanics. Journal of Statistical Physics, 36:219.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Halmos (1957): Introduction to Hilbert Space and the Theory of Spectral Multiplicity. 2nd ed., New York, Chelsea.

    MATH  Google Scholar 

  • D. Hilbert (1932): Gesammelte Abhandlungen III. Chelsea, New York.

    Google Scholar 

  • E. Hrukovski and I. Pitkowsky (2004): Generalizations of Kochen and Specker’s Therorem and the effectiveness of Gleason’s Therorem. Studies in History and Philosophy of Science Part B, 35(2):177–184.

    Article  MathSciNet  Google Scholar 

  • J.M. Jauch (1968): Foundations of Quantum Mechanics. Reading, Mass.

    MATH  Google Scholar 

  • S. Kochen and E.P. Specker (1967): The Problem of Hidden Variables in Quantum Mechanics. Journal of Mathematics and Mechanics, 17:59–87.

    MATH  MathSciNet  Google Scholar 

  • L. Kronecker (1889): Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Werke, II:47–208.

    Google Scholar 

  • G. Lindblad (1999): A General No-Cloning Theorem. Letters in Mathematical Physics, 47:189–196.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Minkowski (1967): Gesammelte Abhandlungen,. hrsg. v. D. Hilbert (Chelsea, New York).

    Google Scholar 

  • E. Nelson (1987a): Predicative Arithmetic. Number 32 of Mathematical Notes. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • E. Nelson (1987b): A Radically Elementary Probability Theory. Princeton University Press, Princeton, N. J.

    Google Scholar 

  • M.C.G. Redhead (1987): Incompleteness, Nonlocality and Realism. Oxford, Clarendon Press.

    MATH  Google Scholar 

  • B. Riemann (1990): Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachtrage. Collected Papers. neu hrsg. v. R. Naramsihan, (B.G. Teubner, Springer-Verlag, Berlin, New York, Leipzig).

    Book  Google Scholar 

  • C. Rovelli (1996): Relational Quantum Mechanics. Int. J. Theor, Physics, 35:1637–1678.

    Google Scholar 

  • D. Schwarz-Perlow and A. Vilenkin (2010): Measures for a Transdimensional Universe. arXiv: 1004. 4567v2.

    Google Scholar 

  • B. van Fraassen (1991): Quantum Mechanics. An Empiricist View. Oxford, Clarendon Press.

    Book  Google Scholar 

  • A. Vilenkin (2006): A Measure of the Universe. arXiv: hep-th/0609193v3.

    Google Scholar 

  • J. von Neumann (1932): Mathematische Grundlagen der Quantenmechanik. Berlin, Springer.

    MATH  Google Scholar 

  • J. von Neumann (1961): Collected Works, volume I, Eine Axiomatisierung der Mengenlehre, 24–33. Pergamon Press, Oxford.

    Google Scholar 

  • H. Weyl (1918): Das Kontinuum, Veit, Leipzig.

    Google Scholar 

  • H. Weyl (1920): Das Verhältnis der kausalen zur statistischen Betrachtungsweise in der Physik. Schweizerische Medizinische Wochenschrift, 50:537–541.

    Google Scholar 

  • H. Weyl (1950): Space, Time, Matter. trans. By H. L. Brose (Dover Publications, New York).

    Google Scholar 

  • H. Weyl (1960): Philosophy of Mathematics and Natural Science. Atheneum, New York.

    Google Scholar 

  • H. Weyl (1968): Gesammelte Abhandlungen. hrsg. v. K. Chandrasekharan (Springer-Verlag, Berlin, Heidelberg, New York).

    Google Scholar 

  • W. Wootters and W. Zurek (2009): The no-cloning theorem. Phys. Today, 62(2):76–66.

    Article  Google Scholar 

  • W.K. Wootters and W.H. Zurek (1982): A single quantum cannot be cloned. Nature, 299:802–803.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gauthier, Y. (2015). Arithmetical Foundations for Physical Theories. In: Towards an Arithmetical Logic. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-22087-1_5

Download citation

Publish with us

Policies and ethics