Advertisement

Arithmetization of Logic

  • Yvon Gauthier
Part of the Studies in Universal Logic book series (SUL)

Abstract

Hilbert is not the originator of the expression “metamathematics”, but he is the first to define it as the theory of formal systems designed to capture the internal logic (“inhaltliche Logik”) of mathematics and it is the internal logic of arithmetic, what I call arithmetical logic, that was to be his primary concern.

Keywords

Finite Type Recursive Function Proof Theory Internal Logic Peano Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. W. Ackermann (1940): Zur Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 117(2):162–194.MathSciNetCrossRefzbMATHGoogle Scholar
  2. M. Agrawal, N. Kayal and N. Saxena (2004): PRIMES is in P. Annals of Mathematics, 160:781–793.zbMATHMathSciNetCrossRefGoogle Scholar
  3. J. Avigad (2003): Number Theory and Elementary Arithmetic. Philosophia Mathematica, XI:257–284.Google Scholar
  4. A. Baker (1975): Transcendental Number Theory. London, Cambridge, University Press.zbMATHCrossRefGoogle Scholar
  5. E. Bishop (1967): Foundations of Constructive Analysis. New York, McGraw-Hill.zbMATHGoogle Scholar
  6. E. Bishop (1970): Mathematics as a Numerical Language. In Intuitionism and Proof Theory, 53–71. North-Holland, Amsterdam and New-York.Google Scholar
  7. J. Boniface and N. Schappacher (2001): Sur le concept de nombre en mathématique. Cours inédit de Leopold Kronecker à Berlin en 1891. Revue d’histoire des mathématiques, 7:207–275.Google Scholar
  8. N. Bourbaki (1970): Théorie des ensembles. Hermann, Paris.zbMATHGoogle Scholar
  9. L. E. J. Brouwer (1910): Beweis der Invarianz der Dimensionenzahl. Math. Annalen, 70:161–165.MathSciNetCrossRefzbMATHGoogle Scholar
  10. L. E. J Brouwer (1912a): Beweis der Invarianz des n-dimensionalen Gebietes. Math. Annalen, 71:305–313.zbMATHCrossRefGoogle Scholar
  11. L. E. J. Brouwer (1912b): Über Abbildungen von Mannigfaltigkeiten. Math, 38(71):97–115.zbMATHGoogle Scholar
  12. L.E.J. Brouwer (1975): Collected Works, vol. I. North-Holland, Oxford, Amsterdam.Google Scholar
  13. J. Burgess (2005): Fixing Frege. Princeton University Press, Princeton, NJ.zbMATHGoogle Scholar
  14. V. Busek and M. Hillery (1996): Quantum Copying: Beyond the No-Cloning Theorem. arXiv:quant-ph/19607018v1.Google Scholar
  15. S.R. Buss (1986): Bounded Arithmetic. Bibliopolis, Napoli.zbMATHGoogle Scholar
  16. S.R. Buss and P.J. Scott, eds (1990): Feasible Mathematics. Birkhaüser, Basel.Google Scholar
  17. G. Cantor (1947): Abhandlungen mathematischen und philosophischen Inhalts, hrsg. v. Zermelo u. A. Fraenkel. Gauthier-Villars, Paris.Google Scholar
  18. G. Cantor (1966): Über einer Satz aus der Theorie der stetigen Mannigfaltigkeiten. Abhandlungen mathematisch und philosophischen Inhalts, Georg Olms, Hildesheim:134–138.Google Scholar
  19. A. Carbone and S. Semmes (1997): Making proof without modus ponens: an introduction to the combinatorics and complexity of cut elimination. Bulletin (new Series) of the American Mathematical Society, 34(2): 131–159.zbMATHMathSciNetGoogle Scholar
  20. A. Cauchy (1847): Oeuvres complètes, IIe série, tome III. Gauthier-Villars, Paris.Google Scholar
  21. J. Conway and S. Kochen (2006): The free will theorem. Found. Physics, 36:1441–1473.zbMATHMathSciNetCrossRefGoogle Scholar
  22. J. Conway and S. Kochen (2009): The strong free will theorem. Not. Amer. Math. Soc., 56:226–232.zbMATHMathSciNetGoogle Scholar
  23. S. Cook and A. Urquhart (1993): Functional Interpretations of Feasibly Constructive Arithmetic. Annals of Pure and Applied Logic, 63:103–200.zbMATHMathSciNetCrossRefGoogle Scholar
  24. T. Coquand (2008): Herbrand et le programme de Hilbert. Gazette des Mathématiciens, 118:17–28.zbMATHMathSciNetGoogle Scholar
  25. A. Davenport (1968): The Higher Arithmetic. Chap. VI. Hutchinson University Library, London.Google Scholar
  26. P. de Fermat (1899): Oeuvres, volume II. Gauthier-Villars, Paris.Google Scholar
  27. R. Dedekind (1965): Was sind und was sollen die Zahlen. Stetigkeit und irrationale Zahlen. Fried. Vieweg und Sohn, Braunschweig.CrossRefzbMATHGoogle Scholar
  28. D. Diecks (1982): Communication by EPR devices. Phys. Lett. A, 92:271–272.CrossRefGoogle Scholar
  29. J. Dieudonné (1974): Cours de Géométrie Algébrique 1. PUF, Paris.zbMATHGoogle Scholar
  30. J. Dowker and D. Kent (1996): On the Consistent Histories Approach to Quantum Mechanics. Journal of Statistical Mechanics, 82((5/6)): 1575–1646.Google Scholar
  31. M. Dummett (2000): Elements of Intuitionism. Oxford University Press, Oxford, 2nd édition.Google Scholar
  32. H. M. Edwards (1987a): Divisor Theory. Birkhaüser, Basel.zbMATHGoogle Scholar
  33. H. M. Edwards (1987b): An appreciation of Kronecker. The Mathematical Intelligencer, 9(1):28–35.zbMATHMathSciNetCrossRefGoogle Scholar
  34. H. M. Edwards (1992): Kronecker’s arithmetic theory of algebraic quantities. Jahresbericht der Deutschen Mathematiker Vereinigung, 94(3):130–139.zbMATHMathSciNetGoogle Scholar
  35. H. M. Edwards, O. Neumann and W. Purkert (1982): Dedekinds “Bunte Bemerkungen” zu Kroneckers “Grundzüge”. Archive for History of Exact Sciences, 27(1):49–85.zbMATHMathSciNetGoogle Scholar
  36. G. Faltings and G. Wüstholz (1984): Rational Points. Vieweg Verlag, Braunschweig-Wiesbaden.zbMATHCrossRefGoogle Scholar
  37. S. Feferman (1960): Arithmetization of metamathematics in a general setting. Fundamenta mathematicae, XLIX:35–92.Google Scholar
  38. G. Frege (1983): Grundgesetze der Arithmetik. H. Pohle, Jena.zbMATHGoogle Scholar
  39. Y. Gauthier (1976): Fondements des mathématiques. Introduction à une philosophie constructiviste. P.U.M., Montréal.zbMATHGoogle Scholar
  40. Y. Gauthier (1978): Foundational Problems of Number Theory. Notre Dame Journal of Formal Logic, 19:92–100.zbMATHMathSciNetCrossRefGoogle Scholar
  41. Y. Gauthier (1983a): Le constructivisme de Herbrand. Journal of Symbolic Logic, 48(4):1230.MathSciNetGoogle Scholar
  42. Y. Gauthier (1983b): Quantum Mechanics and the Local Observer. Int. J. Theor, Physics, 72:1141–1152.Google Scholar
  43. Y. Gauthier (1985): A Theory of Local Negation. The Model and Some Applications. Archiv für mathematische Logik und Grundlagenforschung, 25:127–143.Google Scholar
  44. Y. Gauthier (1989): Finite Arithmetic with Infinite Descent. Dialectica, 43(4):329–337.zbMATHMathSciNetCrossRefGoogle Scholar
  45. Y. Gauthier (1991): De la logique interne. Vrin, Paris.Google Scholar
  46. Y. Gauthier (1994): Hilbert and the Internal Logic of Mathematics. Synthese, 101:1–14.zbMATHMathSciNetGoogle Scholar
  47. Y. Gauthier (1994b): Review of A. Weil The Apprenticeship of a Mathematician. Modern Logic, Vol 4. no. 1 (1994):97–100.Google Scholar
  48. Y. Gauthier (1997a): Logique et fondements des mathématiques. Diderot, Paris.zbMATHGoogle Scholar
  49. Y. Gauthier (1997b): La logique interne. Modèles et applications. Diderot, Paris.Google Scholar
  50. Y. Gauthier (1998): A Polynomial Translation of Gödel’s Functional Interpretation. Bulletin of the Section of Logic, University of Łódź, 27(3):130–137.zbMATHMathSciNetGoogle Scholar
  51. Y. Gauthier (2000): The Internal Consistency of Arithmetic with Infinite Descent. Modern Logic, VIII(1/2):47–87.Google Scholar
  52. Y. Gauthier (2002): Internal Logic. Foundations of Mathematics from Kronecker to Hilbert. Kluwer, Synthese Library, Dordrecht/Boston/London.zbMATHGoogle Scholar
  53. Y. Gauthier (2005): Hermann Weyl on Minkowskian Space-Time and Riemannian Geometry. International Studies in the Philosophy of Science, 19:262–269.MathSciNetCrossRefzbMATHGoogle Scholar
  54. Y. Gauthier (2007): The Notion of Outer Consistency from Hilbert to Gödel (abstract). Bulletin of Symbolic Logic, 13(1):136–137.Google Scholar
  55. Y. Gauthier (2009a): The Construction of Chaos Theory. Found. Sci., 14:153–165.zbMATHMathSciNetCrossRefGoogle Scholar
  56. Y. Gauthier (2009b): Classical Functional Theory and Applied Proof Theory. International Journal of Pure and Applied Mathematics, 56(2): 223–233.zbMATHMathSciNetGoogle Scholar
  57. Y. Gauthier (2010): Logique Arithmétique. L’arithmétisation de la logique. Presses de l’Université Laval, Québec.Google Scholar
  58. Y. Gauthier (2011): Hilbert Programme and Applied Proof Theory. Logique et Analyse, 213:46–68.MathSciNetzbMATHGoogle Scholar
  59. Y. Gauthier (2013a): Kronecker in Contempory Mathematics. General Arithmetic as a Foundational Programme. Reports on Mathematical Logic, 48:37–65.Google Scholar
  60. Y. Gauthier (2013b): A General No-Cloning Theorem for an Infinite Multiverse. Reports in Mathematical Physics, 72:191–199.zbMATHMathSciNetCrossRefGoogle Scholar
  61. A. O. Gel’fond (1934): Sur le Septième Problème de Hilbert. Comptes Rendus Acad. Sci. URSS Moscou, 2:1–6.MathSciNetGoogle Scholar
  62. A. O. Gel’fond and U. V. Linnik (1965): Elementary Methods in Analytic Number Theory. Rand McNally and Co.Google Scholar
  63. G. Gentzen (1969): Collected Papers. E. Szabo, ed. North-Holland, Amsterdam.Google Scholar
  64. J. Giraud (1964): Méthode de la descente. Mémoire 2 de la Société Mathématique de France.Google Scholar
  65. A.M. Gleason (1957): Measures on the Closed Subspaces of a Hilbert Space. Journal of Mathematics and Mechanics, 6:885–893.zbMATHMathSciNetGoogle Scholar
  66. K. Gödel (1931): Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198.CrossRefzbMATHGoogle Scholar
  67. K. Gödel (1958): Über eine noch nicht benüzte Erweiterung des finiten Standpunktes. Dialectica, 12:230–237.CrossRefzbMATHGoogle Scholar
  68. K. Gödel (1967): On formally undecidable propositions. In Jean van Heijenoort, editor, From Frege to Gödel: a source book in mathematical logic 1879–1931. Harvard University Press.Google Scholar
  69. K. Gödel (1990): Collected Works. S. Feferman, ed., volume II, 217–251. Oxford University Press, New York/Oxford.Google Scholar
  70. O. Goldreich (1995): Probabilistic Proof System. Proceedings of the International Congress of Mathematicians, 443–452.Google Scholar
  71. S. Goldstein and D.N. Page (1995): Linearly Positive Histories Probabilities for a Robust Family of Sequences of Quantum Events. Physical Review Letters, 74:19.MathSciNetCrossRefzbMATHGoogle Scholar
  72. A. Granville and T.J. Tucker (2002): It’s as Easy as ABC. Notices of the AMS, 1224–1231.Google Scholar
  73. I. Grattan-Guinness (1970): The Development of the Foundations of Mathematical Analysis from Euler to Riemann. M.I.T. Press, Cambridge, Mass.zbMATHGoogle Scholar
  74. R.B. Griffiths (1984): Consistent Histories and the Interpretation of Quantum Mechanics. Journal of Statistical Physics, 36:219.zbMATHMathSciNetCrossRefGoogle Scholar
  75. A. Grothendieck (1960): Technique de descente et théorèmes d’existence en géométrie algébrique I, Généralité. Descente par morphisme fidèlement plats. Séminaire Bourbaki, 5 (1958–1960) Exp. No. 90, 29 p.Google Scholar
  76. A. Grothendieck and M. Raynaud (1971): Revêtements étale et Groupe fondamental (SGA1), Séminaire de Géométrie algébrique du Bois-Marie 1960–1961. Lecture Notes in Mathematics, Springer-Verlag.zbMATHGoogle Scholar
  77. Y. Gurevitch (1988): Current Trends in Theoretical Computer Science. E. Börger, ed., Logic and the Challenge of Computer Science: 1–57. Computer Science Press, East Lansing, MI.Google Scholar
  78. P. Hájek and P. Pudlák (1993): Metamathematics of First-Order Logic. Springer, Berlin.CrossRefzbMATHGoogle Scholar
  79. M. Hallett (1998): Hilbert and logic. In M. Marion and R. S. Cohen, éditeurs: Quebec Studies in the philosophy of science, Part I:135–187. Kluwer, Dordrecht.Google Scholar
  80. P. Halmos (1957): Introduction to Hilbert Space and the Theory of Spectral Multiplicity. 2nd ed., New York, Chelsea.zbMATHGoogle Scholar
  81. J. Herbrand (1968): Écrits logiques. J. van Heijenoort, ed. PUF, Paris.zbMATHGoogle Scholar
  82. D. Hilbert (1890): Über die Theorie der algebraischen Formen. in Hilbert, vol. II:199–257.Google Scholar
  83. D. Hilbert (1893): Über die vollen Invariantensysteme. in Hilbert, vol. II:287–365.Google Scholar
  84. D. Hilbert (1904): Über die Grundlagen der Logik und Mathematik, 174–185. in: A. Krazer (Hrsg.) Verhandlungen des III. Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904. Leipzig, Teubner.Google Scholar
  85. D. Hilbert (1905): Über die Grundlagen der Logik und der Arithmetik. in Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg, Krazer (ed.) Leipzig: B.G. Teubner, 1905, 95:174–185.Google Scholar
  86. D. Hilbert (1926): Über das Unendliche. Mathematische Annalen, 95: 161–190. trad. par A. Weil sous le titre “Sur l’infini”, Acta Mathematica 48: 91–122.Google Scholar
  87. D. Hilbert (1930): Die Grundlegung der elementaren Zahlenlehre. Mathematische Annalen, 104:485–494.MathSciNetCrossRefzbMATHGoogle Scholar
  88. D. Hilbert (1932): Gesammelte Abhandlungen III. Chelsea, New York.CrossRefzbMATHGoogle Scholar
  89. D. Hilbert (1935): Gesammelte Abhandlungen 3 vols. Chelsea, New York.zbMATHGoogle Scholar
  90. D. Hilbert and P. Bernays (1968–1970): Grundlagen der Mathematik I et II. Springer, Berlin, 2 édition.Google Scholar
  91. D. Hilbert, J. von Neumann and L. Nordheim (1928): Über die Grundlagen der Quantenmechanik. Mathematische Annalen, 98:1–30.MathSciNetCrossRefGoogle Scholar
  92. W. Hodges (1993): Model Theory. Cambridge University Press, Cambridge.zbMATHCrossRefGoogle Scholar
  93. E. Hrukovski and I. Pitkowsky (2004): Generalizations of Kochen and Specker’s Therorem and the effectiveness of Gleason’s Therorem. Studies in History and Philosophy of Science Part B, 35(2):177–184.MathSciNetCrossRefGoogle Scholar
  94. D. Hume (1978): A Treatise of Human Nature. L. A. Selby-Bigge, ed. Clarendon Press, Oxford.Google Scholar
  95. K. Ireland and M. Rosen (1980): A Classical Introduction to Modern Number Theory. Springer, New York/Heidelberg/Berlin.zbMATHGoogle Scholar
  96. J.M. Jauch (1968): Foundations of Quantum Mechanics. Reading, Mass.zbMATHGoogle Scholar
  97. R. Kaye (1991): Models of Peano Arithmetic. Clarendon Press, Oxford.zbMATHGoogle Scholar
  98. S. C. Kleene and J. Vesley (1965): Foundations of Intuitionistic Mathematics. North-Holland, Amsterdam.zbMATHGoogle Scholar
  99. S. Kochen and E.P. Specker (1967): The Problem of Hidden Variables in Quantum Mechanics. Journal of Mathematics and Mechanics, 17:59–87.zbMATHMathSciNetGoogle Scholar
  100. U. Kohlenbach (1998): Arithmetising Proofs in Analysis. In Lascar D. Larrazabal, J.M. and G. Mints, editors. Logig Colloquium 96, volume 12 of Springer Lecture Notes in Logic.Google Scholar
  101. U. Kohlenbach (2008a): Functional Interpretations and their Use in Current Mathematics. Dialectica, 62:223–267.MathSciNetCrossRefzbMATHGoogle Scholar
  102. U. Kohlenbach (2008b): Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer, Heidelberg.zbMATHGoogle Scholar
  103. A. N. Kolmogorov (1925): O printsipe tertium non datur. Matematicheskii sbornik, 32:646–667.zbMATHGoogle Scholar
  104. G. Kreisel (1961): Set-theoretic problems suggested by the notion of potential totality, 103–140. in: Infinitistic Methods. Pergamon Press, Oxford.Google Scholar
  105. G. Kreisel (1976): What have we learnt from Hilbert’s Second Problem? Mathematical Developments arising from Hilbert’s Problems. Providence, Rhode Island: American Mathematical Society., 93–130.Google Scholar
  106. G. Kreisel (1981): Extraction of bounds: interpreting some tricks of the trade. In P. Suppes, editor. University-level computer-assisted instruction at Stanford: 1968–1980, Stanford University Institute for Mathematical Studies in the Social Sciences.Google Scholar
  107. S. Kripke (2009): The Collapse of the Hilbert Program: Why a System Cannot Prove its Own 1-consistency. The Bulletin of Symbolic Logic, 15(2):229–230.CrossRefGoogle Scholar
  108. L. Kronecker (1883): Zur Theorie der Formen höherer Stufen. Werke, II:419–424.Google Scholar
  109. L. Kronecker (1884): Über einige Anwendungen der Modulsysteme auf elementare algebraische Fragen. Werke, III:47–208.Google Scholar
  110. L. Kronecker (1886): Zur Theorie der elliptischen Funktionen. Werke, IV:309–318.Google Scholar
  111. L. Kronecker (1887a): Ein Fundamentalsatz der allgemeinen Arithmetik. Werke, II:211–241.Google Scholar
  112. L. Kronecker (1887b): Über den Zahlbegriff. Werke, III:251–274.Google Scholar
  113. L. Kronecker (1889): Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Werke, II:47–208.Google Scholar
  114. L. Kronecker (1901): Vorlesungen über Zahlentheorie I. K. Hensel, ed. Teubner, Leipzig.Google Scholar
  115. L. Kronecker (1968a): Über Systeme von Funktionen mehrerer Variablen. In K. Hensel, editor, Werke, volume I. Teubner, Leipzig.Google Scholar
  116. L. Kronecker (1968b): Werke, éd. K. Hensel, volume III, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, 245–387. Teubner, Leipzig.Google Scholar
  117. L. Lafforgue (2002): Chtoukas de Drinfeld et correspondance de Langlands. Inventiones Mathematicae, 197(1):11–242.Google Scholar
  118. R. P. Langlands (1976): Some Contemporary Problems with Origins in the Jugendtraum, Mathematical Developments arising from Hilbert’s problems. American Mathematical Society, Providence R.I.zbMATHGoogle Scholar
  119. G. Lejeune-Dirichlet (1969): Werke I. L. Kronecker, ed. Chelsea, New York.Google Scholar
  120. G. Lindblad (1999): A General No-Cloning Theorem. Letters in Mathematical Physics, 47:189–196.zbMATHMathSciNetCrossRefGoogle Scholar
  121. S. Lipschitz (1896): Briefwechsel mit Cantor, Dedekind, Helmholtz, Kronecker, Weierstrass. Vieweg Verlag, Braunschveig.zbMATHGoogle Scholar
  122. J. Lurie (2009): Higher Topos Theory. Annals of Mathematics Studies, Princeton University Press, Princeton.zbMATHGoogle Scholar
  123. M. Marion (1998): Wittgenstein. Finitism and the Foundations of Mathematics. Oxford University Press, Oxford.zbMATHGoogle Scholar
  124. H. Minkowski (1967): Gesammelte Abhandlungen,. hrsg. v. D. Hilbert (Chelsea, New York).Google Scholar
  125. D. Mirimanoff (1917): Les antinomies de Russell et Burali-forti et le problème fondamental de la théorie des ensembles. L’enseignement mathématique, 19:17–52.zbMATHGoogle Scholar
  126. S. Mochizuki: Inter-universal Teichmüller Theory iv. Log-volume Computations and Set-theoretic Foundations. Homepage of S. Mochizuki (2012).Google Scholar
  127. J. Molk (1885): Sur une notion qui comprend celle de la divisibilité et sur la théorie générale de l’élimination. Acta Mathematica, 6:1–165.zbMATHMathSciNetCrossRefGoogle Scholar
  128. Mycielski (1981): Analysis without actual infinity. Journal of Symbolic Logic, 46:625–633.Google Scholar
  129. E. Nelson (1987a): Predicative Arithmetic. Number 32 of Mathematical Notes. Princeton University Press, Princeton, N.J.Google Scholar
  130. E. Nelson (1987b): A Radically Elementary Probability Theory. Princeton University Press, Princeton, N. J.zbMATHGoogle Scholar
  131. R. Parikh (1971): Existence and feasibility in arithmetic. Journal of Symbolic Logic, 36:494–508.zbMATHMathSciNetCrossRefGoogle Scholar
  132. G. Peano (1959): Opere scelte, vol. II. Edizione Cremonese, Roma.zbMATHGoogle Scholar
  133. H. Poincaré (1951): Sur les propriétés arithmétiques des courbes algébriques. Oeuvres, II:483–550.Google Scholar
  134. M.C.G. Redhead (1987): Incompleteness, Nonlocality and Realism. Oxford, Clarendon Press.zbMATHGoogle Scholar
  135. B. Riemann (1990): Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachtrage. Collected Papers. neu hrsg. v. R. Naramsihan, (B.G. Teubner, Springer-Verlag, Berlin, New York, Leipzig).CrossRefzbMATHGoogle Scholar
  136. C. Rovelli (1996): Relational Quantum Mechanics. Int. J. Theor, Physics, 35:1637–1678.Google Scholar
  137. B. Russell (1919): Introduction to Mathematical Philosophy. Allen and Unwin, London, UK.zbMATHGoogle Scholar
  138. B. Russell (1966): Mathematical logic as based on the theory of types. In J. van Heijenoort, éditeur: From Frege to Gödel, 150–182. Harvard University Press, Cambridge, Mass.Google Scholar
  139. V. Yu. Sazonov (1995): On feasible numbers. In D. Leivant, éditeur: Logic and Computational Complexity, 30–51. Lecture Notes in Computer Science, Springer, Berlin Heidelberg.Google Scholar
  140. T. Schneider (1934a): Transzendenzuntersuchungen periodischer Funktionen. J. reine angew. Math., 172:65–69.zbMATHGoogle Scholar
  141. T. Schneider (1934b): Transzendenzuntersuchungen periodischer Funktionen. ii. J. reine angew. Math., 172:70–74.Google Scholar
  142. J. R. Schoenfield (1967): Mathematical Logic. Addison-Wesley, Reading, Mass.Google Scholar
  143. D. Schwarz-Perlow and A. Vilenkin (2010): Measures for a Transdimensional Universe. arXiv: 1004. 4567v2.Google Scholar
  144. J.-P. Serre (2009): How to use finite fields for problems concerning infinite fields. Proc. Conf. Marseille-Luminy (2007), Contemporary Math. Series, AMS., 1–12.Google Scholar
  145. W. Sieg (1999): Hilbert’s Program: 1917–1922. Bulletin of Symbolic Logic, 5(1):1–44.zbMATHMathSciNetCrossRefGoogle Scholar
  146. T. Skolem (1970): Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre. In J. E. Fenstad, éditeur: Selected Works in Logic. Universitetsforlaget, Oslo.Google Scholar
  147. A. Tarski (1951): A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley and Los Angeles, 2nd édition.Google Scholar
  148. B. A. Trakhtenbrot (1950): Nevozmozhnosty Algorifma dla Problemy Razreximosti Konechnyh Klassah, (The impossibility of an algorithm for the decision problem in finite classes). Dokl. Akad. Nauk, SSSR, 70:569–572.Google Scholar
  149. A. S. Troelstra (1969): Principles of Intuitionism. Numéro 95 de Lectures Notes in Mathematics. Springer, Berlin Heidelberg New York.Google Scholar
  150. A. S. Troelstra (1976): Choice Sequences. Clarendon Press, Oxford.zbMATHGoogle Scholar
  151. A. S. Troelstra (2003): Constructivism and Proof Theory. ILLC, University van Amsterdam.Google Scholar
  152. A. S. Troelstra and D.van Dalen (1988): Constructivism in Mathematics. vol. I. North-Holland, Amsterdam.Google Scholar
  153. L. van den Dries (1988): Alfred Tarski’s Elimination Theory for Real Closed Fields. Journal of Symbolic Logic, 53:7–19.zbMATHMathSciNetCrossRefGoogle Scholar
  154. B. van Fraassen (1991): Quantum Mechanics. An Empiricist View. Oxford, Clarendon Press.CrossRefGoogle Scholar
  155. H. S. Vandiver (1936): Constructive Derivation of the Decomposition Field of a Polynomial. Annals of Mathematics, 37(1):1–6.MathSciNetCrossRefzbMATHGoogle Scholar
  156. A. Vilenkin (2006): A Measure of the Universe. arXiv: hep-th/0609193v3.Google Scholar
  157. V. Voevodsky (2010): Univalent Foundation Project. (A modified version of an NSF grant application). October 1.Google Scholar
  158. J. von Neumann (1932): Mathematische Grundlagen der Quantenmechanik. Berlin, Springer.zbMATHGoogle Scholar
  159. J. von Neumann (1961): Collected Works, volume I, Eine Axiomatisierung der Mengenlehre, 24–33. Pergamon Press, Oxford.Google Scholar
  160. K. Weierstrass (1894–1927): Mathematische Werke, 7 Bände. Mayer u. Müller, Berlin.Google Scholar
  161. A Weil (1941): On the Riemann Hypothesis in Function Fields. Proc. Natl. Acad. Sci. USA, 27:345–347.zbMATHMathSciNetCrossRefGoogle Scholar
  162. A. Weil (1949): Numbers of solutions of equations in finite fields. Bull. Am. Math. Soc., 55:497–508.zbMATHMathSciNetCrossRefGoogle Scholar
  163. A. Weil (1976): Elliptic Functions according to Eisentein and Kronecker. Springer, Berlin.CrossRefzbMATHGoogle Scholar
  164. A. Weil (1979a): Oeuvres scientifiques. Collected Paper, Vol. I, Springer-Verlag, New York.Google Scholar
  165. A. Weil (1979b): Number Theory and Algebraic Geometry. In: Weil, Vol. III:442–452.Google Scholar
  166. A. Weil (1979c): L’arithmétique sur les courbes algébriques. In: Weil, Vol. I:11–45.Google Scholar
  167. A. Weil (1984): Number Theory. An Approach through History. From Hammurabi to Legendre. Birkhäuser. Boston-Basel-Berlin.zbMATHGoogle Scholar
  168. A. Weil (1992): The Apprenticeship of a Mathematician. Translated from the French by Jennifer Cage. Birkhäuser, Basel.CrossRefGoogle Scholar
  169. H. Weyl (1918): Das Kontinuum, Veit, Leipzig.zbMATHGoogle Scholar
  170. H. Weyl (1920): Das Verhältnis der kausalen zur statistischen Betrachtungsweise in der Physik. Schweizerische Medizinische Wochenschrift, 50:537–541.Google Scholar
  171. H. Weyl (1940): Algebraic Theory of Numbers. Princeton University Press, Princeton, N. J.zbMATHGoogle Scholar
  172. H. Weyl (1950): Space, Time, Matter. trans. By H. L. Brose (Dover Publications, New York).Google Scholar
  173. H. Weyl (1960): Philosophy of Mathematics and Natural Science. Atheneum, New York.Google Scholar
  174. H. Weyl (1968): Gesammelte Abhandlungen. hrsg. v. K. Chandrasekharan (Springer-Verlag, Berlin, Heidelberg, New York).Google Scholar
  175. W. Wootters and W. Zurek (2009): The no-cloning theorem. Phys. Today, 62(2):76–66.CrossRefGoogle Scholar
  176. W.K. Wootters and W.H. Zurek (1982): A single quantum cannot be cloned. Nature, 299:802–803.CrossRefGoogle Scholar
  177. E. Zermelo (1908a): Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische Annalen, 59:107–128.zbMATHGoogle Scholar
  178. E. Zermelo (1908b): Untersuchungen über die Grundlagen der Mengenlehre i. Mathematische Annalen, 59:261–281.MathSciNetCrossRefzbMATHGoogle Scholar
  179. E. Zermelo (1909): Sur les ensembles finis et le principe de l’induction complète. Acta Mathematica, 32:185–193.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yvon Gauthier
    • 1
  1. 1.University of MontrealMontrealCanada

Personalised recommendations