Skip to main content

A Graph Community Approach for Constructing microRNA Networks

  • Conference paper
  • First Online:
Big Data Computing and Communications (BigCom 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9196))

Included in the following conference series:

  • 2127 Accesses

Abstract

Network integration methods are critical in understanding the underlying mechanisms of genetic perturbations and susceptibility to disease. Often, expression quantitative trait loci (eQTL) mapping is used to integrate two layers of genomic data. However, eQTL associations only represent the direct associations among eQTLs and affected genes. To understand the downstream effects of eQTLs on gene expression, we propose a network community approach to construct eQTL networks that integrates multiple data sources. By using this approach, we can view the genetic networks consisting of genes affected directly or indirectly by genetic variants. To extend the eQTL network, we use a protein-protein interaction network as a base network and a spin glass community detection algorithm to find hubs of genes that are indirectly affected by eQTLs. This method contributes a novel approach to identifying indirect targets that may be affected by variant perturbations. To demonstrate its application, we apply this approach to study how microRNAs affect the expression of target genes and their indirect downstream targets in ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gamazon, E.R., et al.: Genetic architecture of microRNA expression: implications for the transcriptome and complex traits. Am J. Hum Genet 90(6), 1046–1063 (2012)

    Article  Google Scholar 

  2. Lappalainen, T., et al.: Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501(7468), 506–511 (2013)

    Article  Google Scholar 

  3. Huan, T., et al.: Genome-wide identification of microRNA expression quantitative trait loci. Nat Commun. 6, 6601 (2015)

    Article  Google Scholar 

  4. Tian, L., Quitadamo, A., Lin, F., Shi, X.: Methods for Population Based eQTL Analysis in Human Genetics. Tsinghua Science and Technology 19(6), 624–634 (2014)

    Article  MathSciNet  Google Scholar 

  5. Chen, X., Shi, X., Xu, X., Wang, Z., Mills, R.E., Lee, C., Xu, J.: A two-graph guided multi-task lasso approach for eQTL mapping. Proceedings of the 15th International Conference of Artificial Intelligence and Statistics (AISTATS), Journal of Machine Learning Research (JMLR) W&CP 22, 208–217 (2012)

    Google Scholar 

  6. Online Mendelian Inheritance in Man (OMIM). URL: http://omim.org/

  7. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  8. Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011)

    Google Scholar 

  9. Ryan, B.M., Robles, A.I., Harris, C.C.: Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 10(6), 389–402 (2010)

    Article  Google Scholar 

  10. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal, Complex Systems 1695 (2006)

    Google Scholar 

  11. Shabalin, A.A.: Matrix eqtl: Ultra fast eqtl analysis via large matrix operations. Bioinformatics 28(10), 1353–1358 (2012)

    Article  Google Scholar 

  12. Xie, B., et al.: miRCancer: a microRNA cancer association database constructed by text mining on literature. Bioinformatics, btt014 (2013)

    Google Scholar 

  13. Ho, Y.-Y., Cope, L.M., Parmigiani, G.: Modular network construction using eqtl data: an analysis of computational costs and benefits. Frontiers in genetics 5, 40–40 (2014)

    Article  Google Scholar 

  14. Huang, Y., Wuchty, S., Przytycka, T.M.: Eqtl epistasis - challenges and computational approaches. Frontiers in Genetics 4, 51–51 (2013)

    Google Scholar 

  15. Liu, C., Guo, J., Dung-Chul, K., Wang, J.: Inference of snp-gene regulatory networks by integrating gene expressions and genetic perturbations. BioMedical Research International

    Google Scholar 

  16. Lage, K., Karlberg, E.O., Størling, Z.M., Olason, P.I., Pedersen, A.G., Rigina, O., Hinsby, A.M., Tümer, Z.: A human phenome-interactome network of protein complexes implicated in genetic disorders. Nature biotechnology 25(3), 309–316 (2007)

    Article  Google Scholar 

  17. Li, Y., Sheu, C.-C., Ye, Y., de Andrade, M., Wang, L., Chang, S.-C., Aubry, M.C., Aakre, J.A., Allen, M.S., Chen, F., et al.: Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. The lancet oncology 11(4), 321–330 (2010)

    Article  Google Scholar 

  18. Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. Journal of statistical physics 34(5–6), 975–986 (1984)

    Article  MathSciNet  Google Scholar 

  19. Liu, Y., Maxwell, S., Feng, T., Zhu, X., Elston, R.C., Koyutürk, M., Chance, M.R.: Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from gwas data. BMC systems biology 6(Suppl 3), S15 (2012)

    Article  Google Scholar 

  20. Eaton, E., Mansbach, R.: A Spin-Glass Model for Semi-Supervised Community Detection. In: AAAI (2012)

    Google Scholar 

  21. Quitadamo, A., Tian, L., Hall, B., Shi, X.: An Integrated Network of microRNA and Gene Expression in Ovarian Cancer. BMC Bioinformatics 16(Suppl 5), S5 (2015)

    Article  Google Scholar 

  22. Rachel Wang, Y.X., Huang, H.: Review on statistical methods for gene network reconstruction using expression data. Journal of theoretical biology 04, 1–9 (2014)

    Article  Google Scholar 

  23. Pan, L., Wang, C., Xie, J.: A spin-glass model based local community detection method in social networks. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE (2013)

    Google Scholar 

  24. Corney, D.C., Hwang, C.-I., Matoso, A., Vogt, M., Flesken-Nikitin, A., Godwin, A.K., Kamat, A.A., Sood, A.K., Ellenson, L.H., Hermeking, H., et al.: Frequent downregulation of mir-34 family in human ovarian cancers. Clinical Cancer Research 16(4), 1119–1128 (2010)

    Article  Google Scholar 

  25. Brüning-Richardson, A., Bond, J., Alsiary, R., Richardson, J., Cairns, D.A., McCormac, L., Hutson, R., Burns, P.A., Wilkinson, N., Hall, G.D., et al.: Numa overexpression in epithelial ovarian cancer. PloS one 7(6), e38945 (2012)

    Article  Google Scholar 

  26. Flutre, T., Wen, X., Pritchard, J., Stephens, M.: A Statistical Framework for Joint eQTL Analysis in Multiple Tissues. PLoS Genet 9(5), e1003486 (2013)

    Article  Google Scholar 

  27. He, J., Jing, Y., Wei Li, X., Qian, Q.X., Li, F.-S., Liu, L.-Z., Jiang, B.-H., Jiang, Y.: Roles and mechanism of mir-199a and mir-125b in tumor angiogenesis. PLoS One 8(2), e56647 (2013)

    Article  Google Scholar 

  28. Liu, T., Hou, L., Huang, Y.: Ezh2-specific microrna-98 inhibits human ovarian cancer stem cell proliferation via regulating the prb-e2f pathway. Tumor Biology 35(7), 7239–7247 (2014)

    Article  Google Scholar 

  29. Prokopi, M., Kousparou, C.A., Epenetos, A.A.: The Secret Role of microRNAs in Cancer Stem Cell Development and Potential Therapy: A Notch-Pathway Approach. Frontiers in Oncology 4, 389 (2014)

    MATH  Google Scholar 

  30. Yan-ming, L., Shang, C., Yang-ling, O., Yin, D., Li, Y.-N., Li, X., Wang, N., Zhang, S.: mir-200c modulates ovarian cancer cell metastasis potential by targeting zinc finger e-box-binding homeobox 2 (zeb2) expression. Medical Oncology 31(8), 1–11 (2014)

    Google Scholar 

  31. Park, Y.T., Jeong, J.Y., Lee, M.J., Kim, K.I., Kim, T.-H., Kwon, Y.D., Lee, C., Kim, O.J., An, H.-J.: Micrornas overexpressed in ovarian aldh1-positive cells are associated with chemoresistance. J. Ovarian. Res. 6(1), 18 (2013)

    Article  Google Scholar 

  32. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Physical Review E 74(1), 016110 (2006)

    Article  MathSciNet  Google Scholar 

  33. Shen, W., Song, M., Liu, J., Qiu, G., Li, T., Yanjie, H., Liu, H.: Mir-26a promotes ovarian cancer proliferation and tumorigenesis. PloS one 9(1), e86871 (2014)

    Article  Google Scholar 

  34. Dernyi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Physical review letters 94(16), 160202 (2005)

    Article  Google Scholar 

  35. Prislei, S., Martinelli, E., Mariani, M., Raspaglio, G., Sieber, S., Ferrandina, G., Shahabi, S., Scambia, G., Ferlini, C.: MiR-200c and HuR in ovarian cancer. BMC Cancer 13, 72 (2013)

    Article  Google Scholar 

  36. Marchini, S., Cavalieri, D., Fruscio, R., Calura, E., Garavaglia, D., Nerini, I.F., Mangioni, C., Cattoretti, G., livio, L., Beltrame, L., Katsaros, D., Scarampi, L., Menato, G., Perego, P., Chiorino, G., Buda, A., Romualdi, C., D’Incalci, M.: Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. The Lancet Oncology 12(3), 273–285 (2011)

    Article  Google Scholar 

  37. Lu, L.J., Xia, Y., Paccanaro, A., Yu, H., Gerstein, M.: Assessing the limits of genomic data integration for predicting protein networks. Genome Research 15(7), 945953 (2005)

    Article  Google Scholar 

  38. Nitzan, M., Steiman-Shimony, A., Altuvia, Y., Biham, O., Margalit, H.: Interactions between Distant ceRNAs in Regulatory Networks. Biophysical Journal 106(10), 2254–2266

    Google Scholar 

  39. Huang, D., Zhou, X., Lyon, C.J., Hsueh, W.A., Wong, S.T.C.: MicroRNA-Integrated and Network-Embedded Gene Selection with Diffusion Distance. PLoS ONE 5(10), e13748 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hall, B., Quitadamo, A., Shi, X. (2015). A Graph Community Approach for Constructing microRNA Networks. In: Wang, Y., Xiong, H., Argamon, S., Li, X., Li, J. (eds) Big Data Computing and Communications. BigCom 2015. Lecture Notes in Computer Science(), vol 9196. Springer, Cham. https://doi.org/10.1007/978-3-319-22047-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22047-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22046-8

  • Online ISBN: 978-3-319-22047-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics