Skip to main content

Age-Related Variation in the Scent Pouch Bacterial Communities of Striped Hyenas (Hyaena hyaena)

  • Conference paper
Chemical Signals in Vertebrates 13

Abstract

Our understanding of the contributions of symbiotic microbes to animal behavior is being greatly facilitated by technological advances in characterizing host-associated microbial communities and their synergistic metabolic activities. A particularly promising line of inquiry is to elucidate how symbiotic microbes can mediate animals’ chemical communication systems. Using a combination of next-generation DNA sequencing and targeted metabolite analyses, we recently found that symbiotic bacterial communities appear to contribute to scent pouch odors among wild striped hyenas. Here we characterize these bacterial communities among juvenile, young adult, and adult hyenas. Akin to adult scent pouches, juvenile pouches are populated by fermentative bacteria from known odor-producing clades. However, the composition and structure of bacterial communities in juvenile scent pouches are different from, and more variable than, those of communities inhabiting the pouches of adults. Adult striped hyenas possess a core scent pouch bacterial community—12 bacterial types were shared among all sampled adults and consistently accounted for more than 90 % of the recovered 16S rRNA gene sequences. These bacterial types were less widespread and abundant among juveniles. Although verification will ultimately require longitudinal sampling of individual hyenas throughout ontogeny, these data are consistent with the hypothesis that striped hyena scent pouch bacterial communities converge on a stereotypical phenotype during host development. We discuss how this could be facilitated by transmission of bacterial community members from adult scent pouches to those of juveniles by juveniles and adults occupying the same spaces, coming into recurrent physical contact, and/or scent overmarking each other.

K.E. Holekamp and T.M. Schmidt are the co-senior authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albone ES (1984) Mammalian semiochemistry. Wiley, New York

    Google Scholar 

  • Albone ES, Perry GC (1975) Anal sac secretion of the red fox, Vulpes vulpes; volatile fatty acids and diamines: implications for a fermentation hypothesis of chemical recognition. J Chem Ecol 2:101–111

    Article  Google Scholar 

  • Albone ES, Eglinton G, Walker JM, Ware GC (1974) The anal sac secretion of the red fox (Vulpes vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci 14:387–400

    Article  CAS  PubMed  Google Scholar 

  • Algard FT, Dodge AH, Kirkman H (1966) Development of the flank organ (scent gland) of the Syrian hamster. 2. Postnatal development. Am J Anat 118:317–325

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Archie EA, Theis KR (2011) Animal behaviour meets microbial ecology. Anim Behav 82:425–436

    Article  Google Scholar 

  • Binladen J, Gilbert MTP, Bollback JP, Panitz F, Bendixen C, Nielsen R, Willerslev E (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One 2:e197

    Article  PubMed Central  PubMed  Google Scholar 

  • Buesching CD, Stopka P, MacDonald DW (2003) The social function of allo-marking in the European badger (Meles meles). Behaviour 140:965–980

    Article  Google Scholar 

  • Buglass AJ, Darling FMC, Waterhouse JS (1990) Analysis of the anal sac secretion of the Hyaenidae. In: Macdonald DW, Muller-Schwarze D, Natynczuk SE (eds) Chemical signals in vertebrates 5. Kluwer, New York, pp 65–69

    Google Scholar 

  • Burger BV (2005) Mammalian semiochemicals. Top Curr Chem 240:231–278

    CAS  Google Scholar 

  • Cabello AE, Espejo RT, Romero J (2005) Tracing Vibrio parahaemolyticus in oysters (Tiostrea chilensis) using a Green Fluorescent Protein tag. J Exp Mar Biol Ecol 327:157–166

    Article  CAS  Google Scholar 

  • Capone KA, Dowd SE, Stamatas GN, Nikolovski J (2011) Diversity of the human skin microbiome early in life. J Invest Dermatol 131:2026–2032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4:e6669

    Article  PubMed Central  PubMed  Google Scholar 

  • Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38:e200

    Article  PubMed Central  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340

    Article  Google Scholar 

  • Douglas A, Dobson A (2013) New synthesis: animal communication mediated by microbes: fact or fantasy? J Chem Ecol 39:1149

    Article  CAS  PubMed  Google Scholar 

  • Ezenwa VO, Williams AE (2014) Microbes and animal olfactory communication: where do we go from here? Bioessays 36:847–854

    Article  PubMed  Google Scholar 

  • Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB (2012) Animal behavior and the microbiome. Science 338:198–199

    Article  CAS  PubMed  Google Scholar 

  • Fredrich E, Barzantny H, Brune I, Tauch A (2013) Daily battle against body odor: towards the activity of the axillary microbiota. Trends Microbiol 21:305–312

    Article  CAS  PubMed  Google Scholar 

  • Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341

    Article  PubMed  Google Scholar 

  • Gorman ML (1976) A mechanism for individual recognition by odour in Herpestes auropunctatus (Carnivora: Viverridae). Anim Behav 24:141–145

    Article  Google Scholar 

  • Gorman ML, Nedwell DB, Smith RM (1974) An analysis of the contents of the anal scent pockets of Herpestes auropunctatus (Carnivora: Viverridae). J Zool 172:389–399

    Article  Google Scholar 

  • Hammer O (2011) PAST: PAleontological STatistics manual, 2.07 edn. Natural History Museum, Oslo, Norway

    Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: PAleontological STatistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Holekamp KE, Kolowski JM (2009) Hyaenidae. In: Wilson D, Mittermeier R, Fonseca G (eds) Handbook of mammals of the world. Lynx Edicions, Madrid, pp 234–260

    Google Scholar 

  • Hubbell SP (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19:166–172

    Article  Google Scholar 

  • James AG, Austin CJ, Cox DS, Taylor D, Calvert R (2013) Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 83:527–540

    Article  CAS  PubMed  Google Scholar 

  • Leclaire S, Nielsen JF, Drea CM (2014) Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav Ecol 25:996–1004

    Article  Google Scholar 

  • Matthews LH (1939) Reproduction in the spotted hyaena, Crocuta crocuta. Philos Trans R Soc B 230:1–78

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR

    Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mills MGL (1990) Kalahari hyenas: comparative behavioral ecology of two species. Chapman & Hall, New York

    Book  Google Scholar 

  • Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K, Kleerup E, Lynch SV, Sodergren E, Twigg H, Young VB, Bassis CM, Venkataraman A, Schmidt TM, Weinstock GM (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Resp Crit Care 187:1067–1075

    Article  Google Scholar 

  • Orrock JL, Watling JI (2010) Local community size mediates ecological drift and competition in metacommunities. Proc R Soc B Biol Sci 277:2185–2191

    Article  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:1556–1573

    Article  CAS  Google Scholar 

  • Pavlidis P, Noble WS (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19:295–296

    Article  CAS  PubMed  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK (2014) Specialized metabolites from the microbiome in health and disease. Cell Metab 20:719–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sin YW, Buesching CD, Burke T, Macdonald DW (2012) Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol Ecol 81:648–659

    Article  CAS  PubMed  Google Scholar 

  • Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740

    Article  PubMed  Google Scholar 

  • Theis KR, Heckla AL, Verge JR, Holekamp KE (2008) The ontogeny of pasting behavior in free-living spotted hyenas, Crocuta crocuta. In: Hurst JL, Beynon RJ, Roberts SC, Wyatt TD (eds) Chemical signals in vertebrates 11. Springer, New York, pp 179–188

    Chapter  Google Scholar 

  • Theis KR, Schmidt TM, Holekamp KE (2012) Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep 2:615

    Article  PubMed Central  PubMed  Google Scholar 

  • Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP, Holekamp KE, Schmidt TM (2013) Symbiotic bacteria appear to mediate hyena social odors. Proc Natl Acad Sci U S A 110:19832–19837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Troccaz M, Gaia N, Beccucci S, Schrenzel J, Cayeux I, Starkenmann C, Lazarevic V (2015) Mapping axillary microbiota responsible for body odours using a culture-independent approach. Microbiome 3:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB, Schmidt TM (2015) Application of a neutral community model to assess structuring of the human lung microbiome. mBio 6:e02284–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner AP (2013) Hyaena hyaena. In: Kingdon JS, Hoffmann M (eds) The mammals of Africa. Bloomsbury, London, pp 267–272

    Google Scholar 

  • Wagner AP, Creel S, Frank LG, Kalinowski ST (2007) Patterns of relatedness and parentage in an asocial, polyandrous striped hyena population. Mol Ecol 16:4356–4369

    Article  CAS  PubMed  Google Scholar 

  • Wagner AP, Frank LG, Creel S (2008) Spatial grouping in behaviourally solitary striped hyaenas, Hyaena hyaena. Anim Behav 75:1131–1142

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–228

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Kenyan National Council for Science, Technology and Innovation; the Kenya Wildlife Service; the Loisaba, Mpala, and Kisima Ranches (Laikipia); and the Shompole and Olkirimatian Group Ranches for permissions and support of this research. This research was funded by National Science Foundation grants (IOS0920505, IOS1121475, DEB1353110) and the BEACON Center for the Study of Evolution in Action (DBI0939454). A.V. is supported by T32 HL007749.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Theis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Theis, K.R., Venkataraman, A., Wagner, A.P., Holekamp, K.E., Schmidt, T.M. (2016). Age-Related Variation in the Scent Pouch Bacterial Communities of Striped Hyenas (Hyaena hyaena). In: Schulte, B., Goodwin, T., Ferkin, M. (eds) Chemical Signals in Vertebrates 13. Springer, Cham. https://doi.org/10.1007/978-3-319-22026-0_7

Download citation

Publish with us

Policies and ethics