Skip to main content

The Role of Bacteria in Chemical Signals of Elephant Musth: Proximate Causes and Biochemical Pathways

  • Conference paper
Chemical Signals in Vertebrates 13

Abstract

The chemical analysis of urine tells much about the physiological status of mammals, and often reveals compounds that function as chemical signals to conspecifics. Such is the case with mature male African (Loxodonta africana) and Asian (Elephas maximus) elephants in which there is odoriferous drainage from the temporal gland and dribbling of urine during musth, a periodic state in which serum androgens are elevated, food intake typically decreases, and aggressiveness between male conspecifics increases. We have employed solid phase dynamic extraction (SPDE)/GC-MS to identify a series of alkan-2-ones, alkan-2-ols, and a few simple aromatic compounds that increase in abundance in musth elephant urine. The primary focus of this report is on the alkan-2-ones and their corresponding alkan-2-ols, specifically: (1) the probable biosynthesis of these compounds via a secondary pathway for fatty acid metabolism, (2) the proximate cause for their increased abundance in musth urine, and (3) the role of bacteria in the increased abundance of these compounds exogenously in aged urine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albone ES, Eglinton G, Walker JM, Ware GC (1974) The anal sac secretion of the red fox Vulpes vulpes; its chemistry and microbiology. A comparison with the anal sac secretion of the lion, Panthera leo. Life Sci 14:387–400

    Article  CAS  PubMed  Google Scholar 

  • Albone ES, Perry GC (1976) Anal sac secretion of the red fox. Vulpes vulpes Volatile fatty acids and diamines Implications for a fermentative hypothesis of chemical recognition. J Chem Ecol 2:101–111

    Article  CAS  Google Scholar 

  • Albone ES, Gosden PE, Ware GC (1977) Bacteria as a source of chemical signals in mammals. In: Müller-Schwarze D, Mozell MM (eds) Chemical signals in vertebrates. Plenum, New York, pp 35–43

    Chapter  Google Scholar 

  • Albone ES, Gosden PE, Ware GC, Macdonald DW, Hough NG (1978) Bacterial action and chemical signalling in the red fox (Vulpes vulpes) and other mammals. In: Bullard RW (ed) Flavor chemistry of animal foods, ACS Symposium Series 67. American Chemical Society, Washington, DC, pp 78–91

    Chapter  Google Scholar 

  • Albone ES (1984) Mammalian semiochemistry: The investigation of chemical signals between mammals. Wiley-Interscience, New York

    Google Scholar 

  • Apps PJ (2013) Are mammal olfactory signals hiding right under our noses? Naturwissenschaften 100:487–506

    Article  CAS  PubMed  Google Scholar 

  • Archie EA, Theis KR (2011) Animal behaviour meets microbial ecology. Anim Behav 82:425–436

    Article  Google Scholar 

  • Arner P (1995) Impact of exercise on adipose tissue metabolism in humans. Int J Obes Relat Metab Disord 19:S18–S21

    CAS  PubMed  Google Scholar 

  • Bagley KR, Goodwin TE, Rasmussen LEL, Schulte BA (2006) Male African elephants, Loxodonta africana, can distinguish oestrus status via urinary signals. Anim Behav 71:1439–1445

    Article  Google Scholar 

  • Barnes RFW (1982) Mate searching behavior of elephant bulls in a semi-arid environment. Anim Behav 30:1217–1223

    Article  Google Scholar 

  • Bhaumik P, Koski MK, Glumoff T, Hiltunen JK, Wierenga RK (2005) Structural biology of the thioester-dependent degradation and synthesis of fatty acids. Curr Opin Struct Biol 15:621–628

    Article  CAS  PubMed  Google Scholar 

  • Blaustein AR (1981) Sexual selection and mammalian olfaction. Am Nat 117:1006–1010

    Article  Google Scholar 

  • Brennan PA, Keverne EB (2004) Something in the air? New insights into mammalian pheromones. Curr Biol 14:R81–R89

    Article  CAS  PubMed  Google Scholar 

  • Brennan PA, Zufall F (2006) Pheromonal communication in vertebrates. Nature 444:308–315

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Macdonald DW (1985) Social odours in mammals. Clarendon, Oxford

    Google Scholar 

  • Brown JL, Somerville M, Riddle HS, Keele M, Duer CK, Freeman EW (2007) Comparative endocrinology of testicular, adrenal and thyroid function in captive Asian and African elephant bulls. Gen Comp Endocrinol 151:153–162

    Article  CAS  PubMed  Google Scholar 

  • Burger BV (2005) Mammalian semiochemicals. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals II (Topics in current chemistry 240). Springer, Heidelberg, pp 231–278

    Google Scholar 

  • Carlsson SR (1993) Isolation and characterization of glycoproteins. In: Fukuda M, Kobata A (eds) Glycobiology: a practical approach. Oxford University Press, New York, pp 14–16

    Google Scholar 

  • Charpentier MJE, Barthes N, Proffit M, Bessière J-M, Grison C (2012) Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct Ecol 26:769–774

    Article  Google Scholar 

  • Chelliah K, Sukumar R (2013) The role of tusks, musth, and body size in male-male competition among Asian elephants (Elephas maximus). Anim Behav 86:1207–1214

    Article  Google Scholar 

  • Chioléro R, Revelly J-P, Tappy L (1997) Energy metabolism in sepsis and injury. Nutrition 13:45–51

    Article  Google Scholar 

  • Coblentz BE (1976) Functions of scent-urination in ungulates with special reference to feral goats (Capra hircus L.). Am Nat 110:549–557

    Article  Google Scholar 

  • Dakin HD (1908) A synthesis of certain naturally occurring aliphatic ketones, with a suggestion of a possible mode of formation of these substances in the organism. J Biol Chem 4:221–225

    CAS  Google Scholar 

  • Darwin C (1981) The descent of man and selection in relation to sex. Princeton University Press, Princeton, NJ, Photoreproduction of the 1871 edition published by J. Murray, London

    Book  Google Scholar 

  • Deraniyagala PEP (1955) Some extinct elephants, their relatives and the two living species. Ceylon Museums Publications, Government Press, Ceylon

    Google Scholar 

  • Devuyst O, Dahan K, Pirson Y (2005) Tamm-Horsfall protein or uromodulin: New ideas about an old molecule. Nephrol Dial Transplant 20:1290–1294

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS, Helmke E, Schulz S (2005) Volatile organic compounds from arctic bacteria of the Cytophaga-Flavobacterium-Bacteroides group: A retrobiosynthetic approach in chemotaxonomic investigations. Chem Biodivers 2:318–353

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg JF, McKay GM, Jainudeen MR (1971) Reproductive behavior of the Asiatic elephant (Elephas maximus maximus L.). Behaviour 38:193–225

    Article  CAS  PubMed  Google Scholar 

  • Ezenwa VO, Williams AE (2014) Microbes and animal olfactory communication. BioEssays 36:847–854

    Article  PubMed  Google Scholar 

  • Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, Ohlrogge J, Pichersky E (2005) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell 17:1252–1267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ganswindt A, Rasmussen HB, Heistermann M, Hodges JK (2005a) The sexually active states of free-ranging male African elephants (Loxodonta africana): defining musth and non-musth using endocrinology, physical signals, and behavior. Horm Behav 47:83–91

    Article  CAS  PubMed  Google Scholar 

  • Ganswindt A, Heistermann M, Hodges JK (2005b) Physical, physiological, and behavioral correlates of musth in captive African elephants (Loxodonta africana). Physiol Biochem Zool 78:505–514

    Article  PubMed  Google Scholar 

  • Ghosal R, Ganswindt A, Seshagiri PB, Sukumar R (2013) Endocrine correlates of musth in free-ranging Asian elephants (Elephas maximus) determined by non-invasive faecal steroid hormone metabolite measurements. PLoS One 8, e84787

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goodwin TE, Eggert MS, House SJ, Weddell ME, Schulte BA, Rasmussen LEL (2006) Insect pheromones and precursors in female African elephant urine. J Chem Ecol 32:1849–1853

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TE, Schulte BA (2009) Prospecting for mammalian chemical signals via solventless extraction techniques: an elephantine task. ChemoSense 11:9–15

    Google Scholar 

  • Goodwin TE, Brown PA, Eggert MS, Evola MG, House SJ, Morshedi RJ, Weddell ME, Chen CJ, Jackson SR, Aubut Y, Eggert J, Schulte BA, Rasmussen LEL (2007) Use of automated solid phase dynamic extraction (SPDE)/GC-MS and novel macros in the search for African elephant pheromones. In: Hurst J, Beynon R, Wyatt T, Roberts C (eds) Chemical signals in vertebrates 11. Springer, New York, pp 25–35

    Google Scholar 

  • Goodwin TE, Broederdorf LJ, Burkert BA, Hirwa IH, Mark DH, Waldrip ZJ, Kopper RA, Sutherland MV, Freeman EW, Hollister-Smith JA, Schulte BA (2012) Chemical signals of elephant musth: temporal aspects of microbially-mediated modifications. J Chem Ecol 38:81–87

    Article  CAS  PubMed  Google Scholar 

  • Gorman ML, Nedwell DB, Smith RM (1974) An analysis of the contents of the anal scent pockets of Herpestes auropunctatus. J Zool 172:389–399

    Article  Google Scholar 

  • Gorman ML (1976) A mechanism for individual recognition by odour in Herpestes auropunctatus (Carnivora: Viverridae). Anim Behav 24:141–145

    Article  Google Scholar 

  • Greenwood DR, Comeskey D, Hunt MB, Rasmussen LEL (2005) Chemical communication: chirality in elephant pheromones. Nature 438:1097–1098

    Article  CAS  PubMed  Google Scholar 

  • Hall-Martin AJ, van der Walt LA (1984) Plasma testosterone levels in relation to musth in the male African elephant. Koedoe 27:147–149

    Google Scholar 

  • Hollister-Smith JA, Alberts SC, Rasmussen LEL (2008) Do male African elephants, Loxodonta africana, signal musth via urine dribbling? Anim Behav 76:1829–1841

    Article  Google Scholar 

  • Horowitz JF (2003) Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metab 14:386–392

    Article  CAS  PubMed  Google Scholar 

  • Jainudeen MR, Katongole CB, Short RV (1972) Plasma testosterone levels in relation to musth and sexual activity in the male Asiatic elephant, Elephas maximus. J Reprod Fertil 29:99–103

    Article  CAS  PubMed  Google Scholar 

  • James AG, Austin CJ, Cox DS, Taylor D, Calvert R (2013) Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 83:527–540

    Article  CAS  PubMed  Google Scholar 

  • Kamijo A, Kimura K, Sugaya T, Yamanouchi M, Hase H, Kaneko T, Hirata Y, Goto A, Fujita T, Omata M (2002) Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int 62:1628–1637

    Article  CAS  PubMed  Google Scholar 

  • Kappeler PM (1998) To whom it may concern: the transmission and function of chemical signals in Lemur catta. Behav Ecol Sociobiol 42:411–421

    Article  Google Scholar 

  • Kartin BL, Man EB, Winkler AW, Peters JP (1944) Blood ketones and serum lipids in starvation and water deprivation. J Clin Invest 23:824–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keeling CI, Chiu CC, Aw T, Li M, Henderson H, Tittiger C, Weng H-B, Blomquist GJ, Bohlmann J (2013) Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases. Proc Natl Acad Sci U S A 110:18838–18843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinsella JE, Hwang D (1976a) Biosynthesis of flavors by Penicillium roqueforti. Biotechnol Bioeng 18:927–938

    Article  CAS  Google Scholar 

  • Kinsella JE, Hwang D (1976b) Enzymes of Penicillium roqueforti involved in the biosynthesis of cheese flavor. CRC Crit Rev Food Sci Nutr 8:191–228

    Article  CAS  PubMed  Google Scholar 

  • Kunau W-H, Dommes V, Schulz H (1995) β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34:267–342

    Article  CAS  PubMed  Google Scholar 

  • Kwak J, Grigsby CC, Smith BR, Rizki MM, Preti G (2013) Changes in volatile compounds of human urine as it ages: Their interaction with water. J Chromatogr B 941:50–53

    Article  CAS  Google Scholar 

  • Laposata M (1995) Fatty acids: Biochemistry to clinical significance. Am J Clin Pathol 104:172–179

    CAS  PubMed  Google Scholar 

  • Lawrence RC, Hawke JC (1966) The incorporation of [1-14C]acetate into the methyl ketones that occur in steam-distillates of bovine milk fat. Biochem J 98:25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lazar J, Rasmussen LEL, Greenwood DR, Bang I-S, Prestwich GD (2004) Elephant albumin: a multipurpose pheromone shuttle. Chem Biol 11:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Leclaire S, Neilsen JF, Drea CM (2014) Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav Ecol 25:996–1004

    Article  Google Scholar 

  • Leyden JJ, McGinley KJ, Hölzle E, Labows JN, Kligman AM (1981) The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol 77:413–416

    Article  CAS  PubMed  Google Scholar 

  • Li K-Y (2004) Fermentation: Principles and microorganisms. In: Hui YH, Meunier-Goddik L, Josephson J, Nip W-K, Stanfield PS (eds) Handbook of food and beverage fermentation technology, 2nd edn. CRC Press, Boca Raton, FL, p 685

    Google Scholar 

  • Liberles S (2014) Mammalian pheromones. Annu Rev Physiol 76:151–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipinski J (2001) Automated solid phase dynamic extraction: extraction of organics using a wall coated syringe needle. Fresenius J Anal Chem 369:57–62

    Article  CAS  PubMed  Google Scholar 

  • Marilley L, Casey MG (2004) Flavour of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int J Food Microbiol 90:139–159

    Article  CAS  PubMed  Google Scholar 

  • McClatchey KD (2002) Clinical laboratory medicine, 2nd edn. Lippincott, Williams, and Wilkins, Philadelphia

    Google Scholar 

  • McSweeney PLH, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait 80:293–324

    Article  CAS  Google Scholar 

  • Miaskiewicz S, Levey GS, Owen O (1989) Case report: severe metabolic ketoacidosis induced by starvation and exercise. Am J Med Sci 297:178–180

    Article  CAS  PubMed  Google Scholar 

  • Mills GA, Walker V (2001) Headspace solid-phase microextraction profiling of volatile compounds in urine: Application to metabolic investigations. J Chromatogr B 753:259–268

    Article  CAS  Google Scholar 

  • Miquelle DG (1990) Why don’t male bull moose eat during the rut? Behav Ecol Sociobiol 27:145–151

    Article  Google Scholar 

  • Miquelle DG (1991) Are moose mice? The function of scent urination in moose. Am Nat 138:460–477

    Article  Google Scholar 

  • Mochalski P, Krapf K, Ager C, Wiesenhofer H, Agapiou A, Statheropoulos M, Fuchs D, Ellmerer E, Buszewski B, Amann A (2012) Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings. Toxicol Mech Methods 22:502–511

    Article  CAS  PubMed  Google Scholar 

  • Natsch A, Derrer S, Flachsmann F, Schmid J (2006) A broad diversity of volatile acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem Biodivers 3:1–19

    Article  CAS  PubMed  Google Scholar 

  • Naylor R, Richardson SJ, McAllan BM (2008) Boom and bust: A review of the physiology of the marsupial genus Antechinus. J Comp Physiol B 178:545–562

    Article  CAS  PubMed  Google Scholar 

  • Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. W. H Freeman, New York

    Google Scholar 

  • Novotny MV, Soini HA, Koyama S, Wiesler D, Bruce KE, Penn DJ (2007) Chemical identification of MHC-influenced volatile compounds in mouse urine. I: Quantitative proportions of major chemosignals. J Chem Ecol 33:417–434

    Article  CAS  PubMed  Google Scholar 

  • Okuda H (1975) Mechanisms of actions of adrenaline and ACTH in fat mobilization. Pharmacol Biochem Behav 3:149–153

    CAS  PubMed  Google Scholar 

  • Penn DJ, Oberzaucher E, Grammer K, Fischer G, Soini HA, Wiesler D, Novotny MV, Dixon SJ, Xu Y, Brereton RG (2007) Individual and gender fingerprints in human body odour. J R Soc Interface 4:331–340

    Article  PubMed Central  PubMed  Google Scholar 

  • Perrin TE, Rasmussen LEL, Gunawardena R, Rasmussen RA (1996) A method for the collection, long-term storage, and bioassay of labile volatile chemosignals. J Chem Ecol 22:207–221

    Article  CAS  PubMed  Google Scholar 

  • Poole JH (1987) Rutting behaviour in African elephants: The phenomenon of musth. Behaviour 102:283–316

    Article  Google Scholar 

  • Poole JH (1989) Announcing intent: the aggressive state of musth in African elephants. Anim Behav 37:140–152

    Article  Google Scholar 

  • Poole JH, Moss CJ (1981) Musth in the African elephant, Loxodonta africana. Nature 292:830–831

    Article  CAS  PubMed  Google Scholar 

  • Poole JH, Kasman LH, Ramsay EC, Lasley BL (1984) Musth and urinary testosterone concentrations in the African elephant (Loxodonta africana). J Reprod Fertil 70:255–260

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen LEL, Hall-Martin AJ, Hess DL (1996) Chemical profiles of male African elephants, Loxodonta Africana: Physiological and ecological implications. J Mammal 77:422–439

    Article  Google Scholar 

  • Rasmussen LEL, Schulte BA (1998) Chemical signals in the reproduction of Asian (Elephas maximus) and African (Loxodonta africana) elephants. Anim Reprod Sci 53:19–34

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen LEL (1999) Evolution of chemical signals in the Asian elephant, Elephas maximus: Behavioural and ecological influences. J Biosci 24:241–251

    Article  CAS  Google Scholar 

  • Rasmussen LEL, Perrin TE (1999) Physiological correlates of musth: Lipid metabolites and chemical composition of exudates. Physiol Behav 67:539–549

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen LEL, Krishnamurthy V (2000) How chemical signals integrate Asian elephant society: The known and the unknown. Zoo Biol 19:405–423

    Article  CAS  Google Scholar 

  • Rasmussen LEL, Wittemyer G (2002) Chemosignaling of musth by individual wild African elephants, (Loxodonta africana): Implications for conservation and management. Proc Biol Sci 269:853–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen LEL, Greenwood DR (2003) Frontalin: a chemical message of musth in Asian elephants (Elephas maximus). Chem Senses 28:433–446

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen LEL, Lazar J, Greenwood DR (2003) Olfactory adventures of elephantine pheromones. Biochem Soc Trans 31:137–141

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen LEL, Hess DL, Haight JD (1990) Chemical analysis of temporal gland secretions collected from an Asian bull elephant during a four-month musth episode. J Chem Ecol 16:2167–2181

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen LEL, Lee TD, Zhang A, Roelofs WL, Daves GD Jr (1997) Purification, identification, concentration and bioactivity of Z-7-dodecen-1-yl acetate: sex pheromone of the female Asian elephant, Elephas maximus. Chem Senses 22:417–437

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen HB, Ganswindt A, Douglas-Hamilton I, Vollrath F (2008) Endocrine and behavioral changes in male African elephants: linking hormone changes to sexual state and reproductive tactics. Horm Behav 54:539–548

    Article  CAS  PubMed  Google Scholar 

  • Rhodes G, Holland ML, Wiesler D, Novotny M, Moore SA, Peterson RG, Felten DL (1982) Excretion of urinary volatile metabolites in response to alloxan induced diabetes of short duration in rats. J Chromatogr 228:33–42

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC (2001) Scent marking. In: Wolf JO, Sherman PW (eds) Rodent societies. University of Chicago Press, Chicago, pp 255–266

    Google Scholar 

  • Ryan D, Robards K, Prenzler PD, Kendall M (2011) Recent and potential developments in the analysis of urine: A review. Anal Chim Acta 684:17–29

    Article  CAS  Google Scholar 

  • Saleh J, Sniderman AD, Cianflone K (1999) Regulation of plasma fatty acid metabolism. Clin Chem Acta 286:163–180

    Article  CAS  Google Scholar 

  • Saude EJ, Sykes BD (2007) Urine stability for metabolomic studies: Effects of preparation and storage. Metabolomics 3:19–27

    Article  CAS  Google Scholar 

  • Scheline RR (1973) Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmcol Rev 25:451–523

    CAS  Google Scholar 

  • Schildknecht H, Ubl J (1986) Ecochemistry of life: mammalian chemical signals. Interdiscip Sci Rev 11:153–157

    Article  Google Scholar 

  • Schulte BA, Rasmussen LEL (1999) Musth, sexual selection, testosterone and metabolites. In: Johnston RE, Müller-Schwarze D, Sorensen P (eds) Advances in chemical communication in vertebrates. Plenum, New York, pp 383–397

    Chapter  Google Scholar 

  • Schulz S, Dickschat J (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker JD, Elliot WH (1991) Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr 562:125–138

    Article  CAS  PubMed  Google Scholar 

  • Sin WS, Buesching CD, Burke T, Macdonald DW (2012) Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol Ecol 81:648–659

    Article  CAS  PubMed  Google Scholar 

  • Smart SK, Mackintosh SG, Edmondson RD, Taverna SD, Tackett AJ (2009) Mapping the local protein interactome of the NuA3 histone acetyltransferase. Protein Sci 18:1987–1997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorensen PW, Hoye TH (2010) Pheromones in vertebrates. In: Mander LM, Liu H-W (eds) Comprehensive natural products chemistry II: Chemistry and biology. Elsevier, Oxford, pp 225–262

    Chapter  Google Scholar 

  • Spainea DM, Mamizukab EM, Cedenhoa AP, Srougia M (2000) Microbiologic aerobic studies on normal male urethra. Urology 56:207–210

    Article  Google Scholar 

  • Stryer L (1995) Biochemistry, 4th edn. W. H Freeman, New York

    Google Scholar 

  • Swinnen JV, Verhoeven G (1998) Androgens and the control of lipid metabolism in human prostate cancer cells. J Steroid Biochem Mol Biol 65:191–198

    Article  CAS  PubMed  Google Scholar 

  • Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP, Holekamp KE, Schmidt TM (2013) Symbiotic bacteria appear to mediate hyena social odors. Proc Natl Acad Sci U S A 110:19832–19837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toftegaard CL, Moore C, Bradley AJ (1999) Chemical characterization of urinary pheromones in brown antechinus, Antechinus stuartii. J Chem Ecol 25:527–535

    Article  Google Scholar 

  • Troccaz M, Niclass Y, Anziani P, Starkenmann C (2013) The influence of thermal reaction and microbial transformation on the odour of human urine. Flavour Fragr 28:200–211

    Article  CAS  Google Scholar 

  • van der Vusse GJ (2009) Albumin as fatty acid transporter. Drug Metab Pharmacokinet 24:300–307

    Article  PubMed  Google Scholar 

  • Vanderwel D, Oehlschlager AC (1992) Mechanism of brevicomin biosynthesis from (Z)-6-nonen-2-one in a bark beetle. J Am Chem Soc 114:5081–5086

    Article  CAS  Google Scholar 

  • Voigt CC, Caspers B, Speck S (2005) Bats, bacteria, and bat smell: Sex-specific diversity of microbes in a sexually selected scent organ. J Mammal 86:745–749

    Article  Google Scholar 

  • Wellington JL, Beauchamp GK, Wojciechowski-Metzler C (1983) Stability of chemical communicants in urine: individual identity and age of sample. J Chem Ecol 9:235–245

    Article  CAS  PubMed  Google Scholar 

  • Willey JM, Sherwood LM, Woolverton CJ (2008) Prescott, Harley and Klein’s microbiology, 7th edn. McGraw-Hill, New York, p 1066

    Google Scholar 

  • Wyatt TD (2014) Pheromones and animal behavior, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Zechman JM, Martin IG, Wellington JL, Beauchamp GK (1984) Perineal scent gland of wild and domestic cavies: Bacterial activity and urine as sources of biologically significant odors. Physiol Behav 32:269–274

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-X, Sun L, Zhang J-H, Feng Z-Y (2008) Sex- and gonad-affecting scent compounds and 3 male pheromones in the rat. Chem Senses 33:611–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zlatkis A, Bertsch W, Lichtenstein HA, Tishbee A, Shunbo F, Liebich HM, Coscia AM, Fleischer N (1973) Profile of volatile metabolites in urine by gas chromatography-mass spectrometry. Anal Chem 45:763–767

    Article  CAS  PubMed  Google Scholar 

  • Zomer S, Dixon SJ, Xu Y, Jensen SP, Wang H, Lanyon CV, O’Donnell AG, Clare AS, Gosling LM, Penn DJ, Brereton RG (2009) Consensus multivariate methods in gas chromatography mass spectrometry and denaturing gradient gel electrophoresis: MHC-congenic and other strains of mice can be classified according to the profiles of volatiles and microflora in their scent-marks. Analyst 134:114–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Elephant urine samples were supplied by Disney’s Animal Kingdom, Jacksonville Zoo, Miami Metro Zoo, and Riddle’s Elephant and Wildlife Sanctuary. We are most grateful to the dedicated staff members at these facilities for their indispensable help. Preliminary studies related to elephant albumin sequencing were assisted by Rick Edmundson (UAMS) and Dustin Freyaldenhoven (Hendrix College), as well as Leighton Satterfield (Hendrix College) who also carried out the Schiff stain for carbohydrates in the uromodulin. Shelly Bradley (Hendrix College), Larry O’Kane (Agilent), and Ingo Christ (Autosampler Guys) provided much-needed expertise to keep the instruments running. Peggy Morrison and Matthew Windsor were patient and persistent in tracking down many references. We appreciate the assistance of Henderson State University undergraduate students in the Engman research group (Mark Castleberry, Shannon Fiser, Jonathan Shields, Lauren Story, and Charlotte Wetzlar) who helped by sequencing two strains of bacteria from elephant urine. We are grateful for valuable advice from Kevin Theis (Michigan State University), and from Scott and Heidi Riddle (Riddle’s Elephant and Wildlife Sanctuary). We thank Hendrix College for financial support via a Distinguished Professor grant and the Julia Mobley Odyssey Professorship to T.E.G., as well as grants to students through the Odyssey Program. Additional funding in the early stages of this research was provided by the U.S. National Science Foundation (Award Nos. 02-17062, -17068, and -16862 to B.A.S., T.E.G. and the late L.E.L. Rasmussen, respectively). We would like to acknowledge the UAMS Proteomics Facility for mass spectrometric support. This work at UAMS was supported by National Institutes of Health grants P30GM103450, P20GM103429, and UL1TR000039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Goodwin .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to Dr. Eric S. Albone for his pioneering research on the role of bacteria in mammalian semiochemistry.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Goodwin, T.E. et al. (2016). The Role of Bacteria in Chemical Signals of Elephant Musth: Proximate Causes and Biochemical Pathways. In: Schulte, B., Goodwin, T., Ferkin, M. (eds) Chemical Signals in Vertebrates 13. Springer, Cham. https://doi.org/10.1007/978-3-319-22026-0_6

Download citation

Publish with us

Policies and ethics