Skip to main content

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM))

  • 871 Accesses

Abstract

Some therapies that target the stemness of breast CSCs have been developed, all of which aim to stimulate differentiation of breast CSCs into breast non-CSCs, thus eliminating their capacity for self-renewal. Once breast CSCs lose the capacity for self-renewal, they can also lose their resistance to radiotherapy or chemotherapy and ability to invade. In theory, CSC targeted therapy can attack CSCs so effectively that the tumors degenerate. In contrast, traditional cancer therapies attack and kill tumor cells but not CSCs; thus, these tumors shrink but subsequently grow back. Chemo- or radio-resistance, which markedly impairs the efficacy of cancer therapy, involves anti-apoptotic signal transduction pathways that prevent cell death. To date, some molecular mechanisms have been identified that may account for the resistance of breast CSCs to cytotoxic agents. Over-expression of some proteins relating to multidrug resistance has been recognized in breast CSCs. Breast CSCs may also strongly express anti-apoptotic proteins such as survivin and B-cell lymphoma extra-large. Moreover, the efficiency of DNA repair is greater in breast CSCs, which may make them more resistant to traditional agents.

Self-renewal pathways play vital roles in stem cells, in general, including in CSCs. Some signaling pathways, such as Wnt, Notch, and Hedgehog, are expressed strongly in stem cells. These pathways can help breast CSCs to maintain their phenotypes during tumor growth (so-called self-renewal). In fact, some experiments have shown that when they are dysregulated in mammary glands, the affected mice develop breast cancer. Notably, these pathways are dysregulated in almost human BCSC lines. One of the pathways most strongly related to self-renewal is the Her2-signaling pathway, a pathway that many therapies have targeted. These agents were developed to suppress Her2-overexpressing breast cancer and include trastuzumab and lapatinib. In vivo, trastuzumab and lapatinib can improve progression-free survival and overall survival of patients with advanced disease and in vitro trastuzumab has been shown to reduce breast CSC numbers. However, these agents also have some limitations; in particular, almost 50 % of patients who respond to HER2-targeted agents relapse within one year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebayo, B. O., Huang, W. C., Tzeng, D. T., Wu, A., Wang, L. S., Yeh, C. T., & Chao, T. Y. (2015). Ovatodiolide sensitizes aggressive breast cancer cells to doxorubicin anticancer activity, eliminates their cancer stem cell-like phenotype, and reduces doxorubicin-associated toxicity. Cancer Letters, 364(2), 125–134.

    Google Scholar 

  • Alain, T., Hirasawa, K., Pon, K. J., Nishikawa, S. G., Urbanski, S. J., Auer, Y., … Kossakowska , A. E. (2002). Reovirus therapy of lymphoid malignancies. Blood, 100(12), 4146–4153.

    Google Scholar 

  • Alsayed, Y., Ngo, H., Runnels, J., Leleu, X., Singha, U. K., Pitsillides, C. M., … Ghobrial , I. M. (2007). Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood, 109(7), 2708–2717.

    Google Scholar 

  • Ammons, W. S., Bauer, R. J., Horwitz, A. H., Chen, Z. J., Bautista, E., Ruan, H. H., … Dedrick, R. L. (2003). In vitro and in vivo pharmacology and pharmacokinetics of a human engineered monoclonal antibody to epithelial cell adhesion molecule. Neoplasia, 5(2), 146–154.

    Google Scholar 

  • Anthony, B. A., & Link, D. C. (2014). Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends in Immunology, 35(1), 32–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avigan, D., Vasir, B., Gong, J., Borges, V., Wu, Z., Uhl, L., … Kufe, D. (2004). Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clinical Cancer Research, 10(14), 4699–4708.

    Google Scholar 

  • Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A. B., … Rich, N. (2006). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 66(16), 7843–7848.

    Google Scholar 

  • Barbieri, F., Thellung, S., Ratto, A., Carra, E., Marini, V., Fucile, C., … Florio, T. (2015). In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: Translational implications for human tumors. BMC Cancer, 15, 228.

    Google Scholar 

  • Bhat-Nakshatri, P., Goswami, C. P., Badve, S., Sledge, G. W., Jr., & Nakshatri, H. (2013). Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity. Science Reports, 3, 2530.

    Google Scholar 

  • Bostad, M., Olsen, C. E., Peng, Q., Berg, K., Hogset, A., & Selbo, P. K. (2015). Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy. Journal of Controlled Release, 206, 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Brossa, A., Grange, C., Mancuso, L., Annaratone, L., Satolli, M. A., Mazzone, M., … Bussolati, B. (2015). Sunitinib but not VEGF blockade inhibits cancer stem cell endothelial differentiation. Oncotarget, 6(13),11295–11309.

    Google Scholar 

  • Cao, B., Yang, M., Zhu, Y., Qu, X., & Mao, C. (2014). Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy. Advanced Materials, 26(27), 4627–4631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceriani, R. L., Blank, E. W., Couto, J. R., & Peterson, J. A. (1995). Biological activity of two humanized antibodies against two different breast cancer antigens and comparison to their original murine forms. Cancer Research, 55(23 Suppl), 5852s–5856s.

    CAS  PubMed  Google Scholar 

  • Charpentier, M. S., Whipple, R. A., Vitolo, M. I., Boggs, A. E., Slovic, J., Thompson, K. N., … Martin, S. S. (2014). Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment. Cancer Research, 74(4), 1250–1260.

    Google Scholar 

  • Charrad, R. S., Li, Y., Delpech, B., Balitrand, N., Clay, D., Jasmin, C., … Smadja-Joffe, F. (1999). Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nature Medicine, 5(6), 669–676.

    Google Scholar 

  • Chung, S. S., & Vadgama, J. V. (2015). Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFkappaB signaling. Anticancer Research, 35(1), 39–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Colnot, D. R., Roos, J. C., de Bree, R., Wilhelm, A. J., Kummer, J. A., Hanft, G., … van Dongen, G. A. (2003). Safety, biodistribution, pharmacokinetics, and immunogenicity of 99mTc-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with squamous cell carcinoma of the head and neck. Cancer Immunology and Immunotherapy, 52(9), 576–582.

    Google Scholar 

  • Conley, S. J., Baker, T. L., Burnett, J. P., Theisen, R. L., Lazarus, D., Peters, C. G., … Wicha, M. S. (2015). CRLX101, an investigational camptothecin-containing nanoparticle-drug conjugate, targets cancer stem cells and impedes resistance to antiangiogenic therapy in mouse models of breast cancer. Breast Cancer Research and Treatment, 150(3), 559–567.

    Google Scholar 

  • Croker, A. K., & Allan, A. L. (2012). Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44(+) human breast cancer cells. Breast Cancer Research and Treatment, 133(1), 75–87.

    Article  CAS  PubMed  Google Scholar 

  • Deng, L., Shang, L., Bai, S., Chen, J., He, X., Martin-Trevino, R., … Liu, S. (2014). MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development. Cancer Research, 74(22), 6648–6660.

    Google Scholar 

  • Du, X., Ho, M., & Pastan, I. (2007). New immunotoxins targeting CD123, a stem cell antigen on acute myeloid leukemia cells. Journal of Immunotherapy, 30(6), 607–613.

    Article  CAS  PubMed  Google Scholar 

  • Epenetos, A., Bower, G., Deonarain, M., & Bonney, L. (2007). Anti-lactadherin antibodies in anti-angiogenic cancer therapy of breast cancer stem cells. ASCO Annual Meeting Proceedings.

    Google Scholar 

  • Fiorillo, M., Verre, A. F., Iliut, M., Peiris-Pages, M., Ozsvari, B., Gandara, R., … Lisanti, M. P. (2015). Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget, 6(6), 3553–3562.

    Google Scholar 

  • Folkins, C., Man, S., Xu, P., Shaked, Y., Hicklin, D. J., & Kerbel, R. S. (2007). Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Research, 67(8), 3560–3564.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y., Kadioglu, O., Wiench, B., Wei, Z., Gao, C., Luo, M., … Efferth, T. (2015). Cell cycle arrest and induction of apoptosis by cajanin stilbene acid from Cajanus cajan in breast cancer cells. Phytomedicine, 22(4), 462–468.

    Google Scholar 

  • Gadhoum, Z., Delaunay, J., Maquarre, E., Durand, L., Lancereaux, V., Qi, J., … Smadja-Joffe, F. (2004). The effect of anti-CD44 monoclonal antibodies on differentiation and proliferation of human acute myeloid leukemia cells. Leukemia & Lymphoma, 45(8), 1501–1510.

    Google Scholar 

  • Gadhoum, Z., Leibovitch, M. P., Qi, J., Dumenil, D., Durand, L., Leibovitch, S., Smadja-Joffe, F. (2004). CD44: A new means to inhibit acute myeloid leukemia cell proliferation via p27Kip1. Blood, 103(3), 1059–1068.

    Google Scholar 

  • Garulli, C., Kalogris, C., Pietrella, L., Bartolacci, C., Andreani, C., Falconi, M., … Amici, A. (2014). Dorsomorphin reverses the mesenchymal phenotype of breast cancer initiating cells by inhibition of bone morphogenetic protein signaling. Cellular Signalling, 26(2), 352–362.

    Google Scholar 

  • Goel, S., Bauer, R. J., Desai, K., Bulgaru, A., Iqbal, T., Strachan, B. K., …, Mani, S. (2007). Pharmacokinetic and safety study of subcutaneously administered weekly ING-1, a human engineere monoclonal antibody targeting human EpCAM, in patients with advanced solid tumors. Annals of Oncology, 18(10), 1704–1707.

    Google Scholar 

  • Gray, P. C., & Vale, W. (2012). Cripto/GRP78 modulation of the TGF-beta pathway in development and oncogenesis. FEBS Letters, 586(14), 1836–1845.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gulcur, E., Thaqi, M., Khaja, F., Kuzmis, A., & Onyuksel, H. (2013). Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: A novel therapeutic approach for breast cancer and breast cancer stem cells. Drug Delivery and Translation Research, 3(6).

    Google Scholar 

  • Guo, Y., Ma, J., Wang, J., Che, X., Narula, J., Bigby, M., … Sy, S. (1994). Inhibition of human melanoma growth and metastasis in vivo by anti-CD44 monoclonal antibody. Cancer Research, 54(6), 1561–1565

    Google Scholar 

  • Gurney. (2007). Oncomed Pharmaceuticals Inc. Patent WO2007142711.

    Google Scholar 

  • Gurney. (2008). Oncomed Pharmaceuticals Inc. Patent WO2008042236.

    Google Scholar 

  • Gutheil, J. C., Campbell, T. N., Pierce, P. R., Watkins, J. D., Huse, W. D., Bodkin, D. J., & Cheresh, D. A. (2000). Targeted antiangiogenic therapy for cancer using Vitaxin: A humanized monoclonal antibody to the integrin alphavbeta3. Clinical Cancer Research, 6(8), 3056–3061.

    Google Scholar 

  • Han, Y. K., Lee, J. H., Park, G. Y., Chun, S. H., Han, J. Y., Kim, S. D., … Lee, C. G. (2013). A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy. Biochemical and Biophysical Research Communications, 430(4), 1329–1333.

    Google Scholar 

  • Hartman, Z. C., Poage, G. M., den Hollander, P., Tsimelzon, A., Hill, J., Panupinthu, N., … Brown, P. H. (2013). Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Research, 73(11), 3470–3480.

    Google Scholar 

  • Hashiro, G., Loh, P. C., & Yau, J. T. (1977). The preferential cytotoxicity of reovirus for certain transformed cell lines. Archives of Virology, 54(4), 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, S., Buchanan, M., Jahan, K., Aguilar-Mahecha, A., Gaboury, L., Muller, W. J., … Basik, M. (2011). CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. International Journal of Cancer, 129(1), 225–232.

    Google Scholar 

  • Hata, Y., Etoh, T., Inomata, M., Shiraishi, N., Nishizono, A., & Kitano, S. (2008). Efficacy of oncolytic reovirus against human breast cancer cells. Oncology Reports, 19(6), 1395–1398.

    CAS  PubMed  Google Scholar 

  • He, B., You, L., Uematsu, K., Xu, Z., Lee, A. Y., Matsangou, M., … Jablons, D. M. (2004). A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia, 6(1), 7–14.

    Google Scholar 

  • Hendershot, L. M., Valentine, V. A., Lee, A. S., Morris, S. W., & Shapiro, D. N. (1994). Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics, 20(2), 281–284.

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa, K., Nishikawa, S. G., Norman, K. L., Alain, T., Kossakowska, A., & Lee, P. W. (2002). Oncolytic reovirus against ovarian and colon cancer. Cancer Research, 62(6), 1696–1701.

    CAS  PubMed  Google Scholar 

  • Honn, K. V., & Tang, D. G. (1992). Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Metastasis Reviews, 11(3–4), 353–375.

    Article  CAS  PubMed  Google Scholar 

  • Hu, K., Zhou, H., Liu, Y., Liu, Z., Liu, J., Tang, J., … Chen, C. (2015). Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale, 7(18), 8607–8618.

    Google Scholar 

  • Huang, Z. J., You, J., Luo, W. Y., Chen, B. S., Feng, Q. Z., Wu, B. L., … Luo, Q. (2015). Reduced tumorigenicity and drug resistance through the downregulation of octamer-binding protein 4 and Nanog transcriptional factor expression in human breast stem cells. Molecular Medicine Reports, 11(3), 1647–1654.

    Google Scholar 

  • Jang, G. B., Hong, I. S., Kim, R. J., Lee, S. Y., Park, S. J., Lee, E. S., … Nam, J. S. (2015). Wnt/beta-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Research, 75(8), 1691–1702.

    Google Scholar 

  • Jeong, Y., Swami, S., Krishnan, A. V., Williams, J. D., Martin, S., Horst, R. L., … Diehn, M. (2015). Inhibition of mouse breast tumor initiating cells by calcitriol and dietary vitamin D. Molecular Cancer Therapeutics, 14(8):1951–1961.

    Google Scholar 

  • Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12(10), 1167–1174.

    Article  PubMed  Google Scholar 

  • Kadioglu, O., Fu, Y., Wiench, B., Zu, Y., & Efferth, T. (2015). Synthetic cajanin stilbene acid derivatives inhibit c-MYC in breast cancer cells. Archives of Toxicology.

    Google Scholar 

  • Kakarala, M., Brenner, D. E., Korkaya, H., Cheng, C., Tazi, K., Ginestier, C., … Wicha, M. S. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122(3), 777–785.

    Google Scholar 

  • Kang, L., Mao, J., Tao, Y., Song, B., Ma, W., Lu, Y., … Li, L. (2015). MiR-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Science.

    Google Scholar 

  • Kilani, R. T., Tamimi, Y., Hanel, E. G., Wong, K. K., Karmali, S., Lee, P. W., & Moore, R. B. (2003). Selective reovirus killing of bladder cancer in a co-culture spheroid model. Virus Research, 93(1), 1–12.

    Google Scholar 

  • Kochhar, R., Khurana, V., Bejjanki, H., Caldito, G., and Fort, C. (2005). Statins to reduce breast cancer risk: A case control study in US female veterans. Paper presented at: ASCO Annual Meeting Proceedings.

    Google Scholar 

  • Koppe, M., Schaijk, F., Roos, J., Leeuwen, P., Heider, K. H., Kuthan, H., & Bleichrodt, R. (2004). Safety, pharmacokinetics, immunogenicity, and biodistribution of (186)re-labeled humanized monoclonal antibody BIWA 4 (Bivatuzumab) in patients with early-stage breast cancer. Cancer Biotherapy & Radiopharmaceuticals, 19(6), 720–729.

    Google Scholar 

  • Korkaya, H., Kim, G. I., Davis, A., Malik, F., Henry, N. L., Ithimakin, S., … Wicha, M. S. (2012). Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Molecular Cell, 47(4), 570–584.

    Google Scholar 

  • Lee, B. C., Lee, T. H., Avraham, S., & Avraham, H. K. (2004). Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Molecular Cancer Research, 2(6), 327–338.

    CAS  PubMed  Google Scholar 

  • Lee, A., Lee, T.-W., Yu, J., Yu, H.-C., & Yu, A. (2015). A novel peptide that directs chemotherapy against breast cancer stem cell. The FASEB Journal, 29(629).

    Google Scholar 

  • Lenz, H. J., & Kahn, M. (2014). Safely targeting cancer stem cells via selective catenin coactivator antagonism. Cancer Science, 105(9), 1087–1092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewicki. (2007). Oncomed Pharmaceuticals Inc. Patent WO2007145840.

    Google Scholar 

  • Liang, Z., Bian, X., & Shim, H. (2014). Inhibition of breast cancer metastasis with microRNA-302a by downregulation of CXCR4 expression. Breast Cancer Research and Treatment, 146(3), 535–542.

    Article  PubMed Central  PubMed  Google Scholar 

  • Marcato, P., Dean, C. A., Giacomantonio, C. A., & Lee, P. W. (2009). Oncolytic reovirus effectively targets breast cancer stem cells. Molecular Therapy, 17(6), 972–979.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martowicz, A., Rainer, J., Lelong, J., Spizzo, G., Gastl, G., & Untergasser, G. (2013). EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth. Molecular Cancer, 12, 56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClements, L., Yakkundi, A., Papaspyropoulos, A., Harrison, H., Ablett, M. P., Jithesh, P. V., … Robson, T. (2013). Targeting treatment-resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway. Clinical Cancer Research, 19(14), 3881–3893.

    Google Scholar 

  • McWhirter, J. R., Kretz-Rommel, A., Saven, A., Maruyama, T., Potter, K. N., Mockridge, C. I., … Bowdish, K. S. (2006). Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 1041–1046.

    Google Scholar 

  • Mi, K., & Xing, Z. (2015). CD44(+)/CD24(-) breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold. International Journal of Nanomedicine, 10, 3043–3053.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitri, Z., Constantine, T., & O’Regan, R. (2012). The HER2 receptor in breast cancer: Pathophysiology, clinical use, and new advances in therapy. Chemotherapy Research and Practice, 2012, 743193.

    Article  PubMed Central  PubMed  Google Scholar 

  • Montales, M. T., Rahal, O. M., Kang, J., Rogers, T. J., Prior, R. L., Wu, X., & Simmen, R. C. (2012). Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells. Carcinogenesis, 33(3), 652–660.

    Google Scholar 

  • Mukherjee, S., Mazumdar, M., Chakraborty, S., Manna, A., Saha, S., Khan, P., … Das, T. (2014). Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/beta-catenin negative feedback loop. Stem Cell Research & Therapy, 5(5), 116.

    Google Scholar 

  • Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., … Zlotnik, A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.

    Google Scholar 

  • Nakamura, M., Kubo, M., Yanai, K., Mikami, Y., Ikebe, M., Nagai, S., … Katano, M. (2007). Anti-patched-1 antibodies suppress hedgehog signaling pathway and pancreatic cancer proliferation. Anticancer Research, 27(6A), 3743–3747.

    Google Scholar 

  • Naujokat, C., & Steinhart, R. (2012). Salinomycin as a drug for targeting human cancer stem cells. Journal of Biomedicine and Biotechnology, 2012, 950658.

    Article  PubMed Central  PubMed  Google Scholar 

  • Naundorf, S., Preithner, S., Mayer, P., Lippold, S., Wolf, A., Hanakam, F., … Dreier, T. (2002). In vitro and in vivo activity of MT201, a fully human monoclonal antibody for pancarcinoma treatment. International Journal of Cancer, 100(1), 101–110.

    Google Scholar 

  • Nemeth, J. A., Cher, M. L., Zhou, Z., Mullins, C., Bhagat, S., & Trikha, M. (2003). Inhibition of alpha(v)beta3 integrin reduces angiogenesis, bone turnover, and tumor cell proliferation in experimental prostate cancer bone metastases. Clinical and Experimental Metastasis, 20(5), 413–420.

    Article  CAS  PubMed  Google Scholar 

  • Norman, K. L., Coffey, M. C., Hirasawa, K., Demetrick, D. J., Nishikawa, S. G., DiFrancesco, L. M., … Lee, P. W. (2002). Reovirus oncolysis of human breast cancer. Human Gene Therapy, 13(5), 641–652.

    Google Scholar 

  • Oberneder, R., Weckermann, D., Ebner, B., Quadt, C., Kirchinger, P., Raum, T., … Leo, E. (2006). A phase I study with adecatumumab, a human antibody directed against epithelial cell adhesion molecule, in hormone refractory prostate cancer patients. European Journal of Cancer, 42(15), 2530–2538.

    Google Scholar 

  • Olafsen, T., Gu, Z., Sherman, M. A., Leyton, J. V., Witkosky, M. E., Shively, J. E., … Reiter, R. E. (2007). Targeting, imaging, and therapy using a humanized antiprostate stem cell antigen (PSCA) antibody. Journal of Immunotherapy, 30(4), 396–405.

    Google Scholar 

  • Oosterling, S. J., van der Bij, G. J., Bogels, M., ten Raa, S., Post, J. A., Meijer, G. A., … van Egmond, M. (2008). Anti-beta1 integrin antibody reduces surgery-induced adhesion of colon carcinoma cells to traumatized peritoneal surfaces. Annals of Surgery, 247(1), 85–94.

    Google Scholar 

  • Ottaiano, A., di Palma, A., Napolitano, M., Pisano, C., Pignata, S., Tatangelo, F., … Scala, S. (2005). Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunology and Immunotherapy, 54(8), 781–791.

    Google Scholar 

  • Park, C. C., Zhang, H. J., Yao, E. S., Park, C. J., & Bissell, M. J. (2008). Beta1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Research, 68(11), 4398–4405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petrelli, A., Carollo, R., Cargnelutti, M., Iovino, F., Callari, M., Cimino, D., … Giordano, S. (2015). By promoting cell differentiation, miR-100 sensitizes basal-like breast cancer stem cells to hormonal therapy. Oncotarget, 6(4), 2315–2330.

    Google Scholar 

  • Pham, P. V., Phan, N. L., Nguyen, N. T., Truong, N. H., Duong, T. T., Le, D. V., … Phan, N. K. (2011). Differentiation of breast cancer stem cells by knockdown of CD44: Promising differentiation therapy. Journal of Translational Medicine, 9, 209.

    Google Scholar 

  • Prabhakaran, P., Hassiotou, F., Blancafort, P., & Filgueira, L. (2013). Cisplatin induces differentiation of breast cancer cells. Frontiers in Oncology, 3, 134.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramsay, A. G., Marshall, J. F., & Hart, I. R. (2007). Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Reviews, 26(3–4), 567–578.

    Article  CAS  PubMed  Google Scholar 

  • Ridgway, J., Zhang, G., Wu, Y., Stawicki, S., Liang, W. C., Chanthery, Y., … Yan, M. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444(7122), 1083–1087.

    Google Scholar 

  • Riechelmann, H., Sauter, A., Golze, W., Hanft, G., Schroen, C., Hoermann, K., … Gronau, S. (2008). Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncology, 44(9), 823–829.

    Google Scholar 

  • Rizzo, P., Osipo, C., Foreman, K., Golde, T., Osborne, B., & Miele, L. (2008). Rational targeting of Notch signaling in cancer. Oncogene, 27(38), 5124–5131.

    Article  CAS  PubMed  Google Scholar 

  • Roy, R., Willan, P. M., Clarke, R., & Farnie, G. (2010). Differentiation therapy: Targeting breast cancer stem cells to reduce resistance to radiotherapy and chemotherapy. Breast Cancer Research, 12(Suppl 1), O5.

    Article  PubMed Central  Google Scholar 

  • Saffran, D. C., Raitano, A. B., Hubert, R. S., Witte, O. N., Reiter, R. E., & Jakobovits, A. (2001). Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2658–2663.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sagiv, E., Starr, A., Rozovski, U., Khosravi, R., Altevogt, P., Wang, T., & Arber, N. (2008). Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Research, 68(8), 2803–2812.

    Google Scholar 

  • Saito, H., Dubsky, P., Dantin, C., Finn, O. J., Banchereau, J., & Palucka, A. K. (2006). Cross-priming of cyclin B1, MUC-1 and survivin-specific CD8+ T cells by dendritic cells loaded with killed allogeneic breast cancer cells. Breast Cancer Research, 8(6), R65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Salvador, M. A., Wicinski, J., Cabaud, O., Toiron, Y., Finetti, P., Josselin, E., … Ginestier, C. (2013). The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clinical Cancer Research, 19(23), 6520–6531.

    Google Scholar 

  • Sansone, P., Storci, G., Tavolari, S., Guarnieri, T., Giovannini, C., Taffurelli, M., … Bonafe, M. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. Journal of Clinical Investigation, 117(12), 3988–4002.

    Google Scholar 

  • Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., … Frank, M. H. (2008). Identification of cells initiating human melanomas. Nature, 451(7176), 345–349.

    Google Scholar 

  • Seo, E. J., Wiench, B., Hamm, R., Paulsen, M., Zu, Y., Fu, Y., & Efferth, T. (2015). Cytotoxicity of natural products and derivatives toward MCF-7 cell monolayers and cancer stem-like mammospheres. Phytomedicine, 22(4), 438–443.

    Google Scholar 

  • Singh, J. K., Simoes, B. M., Clarke, R. B., & Bundred, N. J. (2013). Targeting IL-8 signalling to inhibit breast cancer stem cell activity. Expert Opinion on Therapeutic Targets, 17(11), 1235–1241.

    Article  CAS  PubMed  Google Scholar 

  • Smith, L. M., Nesterova, A., Ryan, M. C., Duniho, S., Jonas, M., Anderson, M., … Carter, P. J. (2008). CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. British Journal of Cancer, 99(1), 100–109.

    Google Scholar 

  • Soriano, J. V., Uyttendaele, H., Kitajewski, J., & Montesano, R. (2000). Expression of an activated Notch4(int-3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. International Journal of Cancer, 86(5), 652–659.

    Article  CAS  Google Scholar 

  • Strofer, M., Jelkmann, W., & Depping, R. (2011). Curcumin decreases survival of Hep3B liver and MCF-7 breast cancer cells: The role of HIF. Strahlentherapie und Onkologie, 187(7), 393–400.

    Article  PubMed  Google Scholar 

  • Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Wang, J., … Taichman, R. S. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20(2), 318–329.

    Google Scholar 

  • Sun, T. M., Wang, Y. C., Wang, F., Du, J. Z., Mao, C. Q., Sun, C. Y., … Wang, J. (2014). Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials, 35(2), 836–845.

    Google Scholar 

  • Tang, Y., Kitisin, K., Jogunoori, W., Li, C., Deng, C. X., Mueller, S. C., … Mishra, L. (2008). Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2445–2450.

    Google Scholar 

  • Tang, W., Yu, F., Yao, H., Cui, X., Jiao, Y., Lin, L., … Liu, Q. (2014). miR-27a regulates endothelial differentiation of breast cancer stem like cells. Oncogene, 33(20), 2629–2638.

    Google Scholar 

  • Tijink, B. M., Buter, J., de Bree, R., Giaccone, G., Lang, M. S., Staab, A., … van Dongen, G. A. (2006). A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clinical Cancer Research, 12(20 Pt 1), 6064–6072.

    Google Scholar 

  • Ting, J., & Lee, A. S. (1988). Human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene: Structure, conservation, and regulation. DNA, 7(4), 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Todaro, M., Alea, M. P., Di Stefano, A. B., Cammareri, P., Vermeulen, L., Iovino, F., … Stassi, G. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1(4), 389–402.

    Google Scholar 

  • Wallner, L., Dai, J., Escara-Wilke, J., Zhang, J., Yao, Z., Lu, Y., … Keller, E. T. (2006). Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Research, 66(6), 3087–3095.

    Google Scholar 

  • Wei, X., Senanayake, T. H., Warren, G., & Vinogradov, S. V. (2013). Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjugate Chemistry, 24(4), 658–668.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei, H., Wang, S., Zhang, D., Hou, S., Qian, W., Li, B., … Guo, Y. (2009). Targeted delivery of tumor antigens to activated dendritic cells via CD11c molecules induces potent antitumor immunity in mice. Clinical Cancer Research, 15(14), 4612–4621.

    Google Scholar 

  • Wu, C. H., Hong, B. H., Ho, C. T., & Yen, G. C. (2015). Targeting cancer stem cells in breast cancer: Potential anticancer properties of 6-shogaol and pterostilbene. Journal of Agricultural and Food Chemistry, 63(9), 2432–2441.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Wang, J., Li, X., Liu, Y., Dai, L., Wu, X., & Chen, C. (2014). Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. Biomaterials, 35(16), 4667–4677.

    Google Scholar 

  • Yan, B., Stantic, M., Zobalova, R., Bezawork-Galeta, A., Stapelberg, M., Stursa, J., … Neuzil, J. (2015). Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer, 15(1), 401.

    Google Scholar 

  • Yang, W. Q., Senger, D., Muzik, H., Shi, Z. Q., Johnson, D., Brasher, P. M., … Forsyth, P. A. (2003). Reovirus prolongs survival and reduces the frequency of spinal and leptomeningeal metastases from medulloblastoma. Cancer Research, 63(12), 3162–3172.

    Google Scholar 

  • Young, D. (2007). Arius Research Inc. Patent WO2007098571.

    Google Scholar 

  • Zeng, W. G., Hu, P., Wang, J. N., & Liu, R. B. (2013). All-trans retinoic acid effectively inhibits breast cancer stem cells growth in vitro. Zhonghua Zhong Liu Za Zhi, 35(2), 89–93.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Luo, W., Wang, Y., Liu, Y., & Zheng, L. (2014). Purified dendritic cell-tumor fusion hybrids supplemented with non-adherent dendritic cells fraction are superior activators of antitumor immunity. PLoS One, 9(1), e86772.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y., Ma, B., Zhou, Y., Zhang, M., Qiu, X., Sui, Y., … Fan, Q. (2007). Dendritic cells fused with allogeneic breast cancer cell line induce tumor antigen-specific CTL responses against autologous breast cancer cells. Breast Cancer Research and Treatment, 105(3), 277–286.

    Google Scholar 

  • Zhang, X., Yang, Y., Liang, X., Zeng, X., Liu, Z., Tao, W., … Mei, L. (2014). Enhancing therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with autophagy inhibitor on breast cancer. Theranostics, 4(11), 1085–1095.

    Google Scholar 

  • Zhang, P., Yi, S., Li, X., Liu, R., Jiang, H., Huang, Z., … Huang, Y. (2014). Preparation of triple-negative breast cancer vaccine through electrofusion with day-3 dendritic cells. PLoS One, 9(7), e102197.

    Google Scholar 

  • Zhang, Y., Zhang, Y., Chen, J., Liu, Y., & Luo, W. (2015). Dendritic-tumor fusion cells derived heat shock protein70-peptide complex has enhanced immunogenicity. PLoS One, 10(5), e0126075.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The author(s)

About this chapter

Cite this chapter

Van Pham, P. (2015). Targeting Breast Cancer Stem Cells. In: Breast Cancer Stem Cells & Therapy Resistance. SpringerBriefs in Stem Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-22020-8_6

Download citation

Publish with us

Policies and ethics