Skip to main content

Synthesizing and Tuning Chemical Reaction Networks with Specified Behaviours

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9211))

Included in the following conference series:

Abstract

We consider how to generate chemical reaction networks (CRNs) from functional specifications. We propose a two-stage approach that combines synthesis by satisfiability modulo theories and Markov chain Monte Carlo based optimisation. First, we identify candidate CRNs that have the possibility to produce correct computations for a given finite set of inputs. We then optimise the reaction rates of each CRN using a combination of stochastic search techniques applied to the chemical master equation, simultaneously improving the probability of correct behaviour and ruling out spurious solutions. In addition, we use techniques from continuous time Markov chain theory to study the expected termination time for each CRN. We illustrate our approach by identifying CRNs for majority decision-making and division computation, which includes the identification of both known and unknown networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume that the reaction volume is 1 to allow for later volume scaling e.g. \(k_x^r/v\) is the propensity for a reaction volume equal to v.

  2. 2.

    We consider terminating computations by enforcing that no reactions are enabled at the state that satisfies \(\phi _F\). Alternative strategies possible within our approach could consider reaching a fix-point (i.e. the firing of any enabled reaction does not cause a transition to a different state), or reaching a cycle along which \(\phi _F\) is satisfied, to guarantee that the correct output is eventually computed and remains unchanged by any subsequent reactions.

  3. 3.

    At present, our uniqueness constraint does not consider other CRN isomorphisms but certain species symmetries are broken by the specification \(\Phi _i\).

References

  1. Wilhelm, T.: The smallest chemical reaction system with bistability. BMC Syst. Biol. 3, 90 (2009)

    Article  Google Scholar 

  2. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. PNAS 107, 5393–5398 (2010)

    Article  Google Scholar 

  3. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)

    Article  Google Scholar 

  4. Fujii, T., Rondelez, Y.: Predator-prey molecular ecosystems. ACS Nano. 7(1), 27–34 (2013)

    Article  Google Scholar 

  5. Kim, J., Winfree, E.: Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7(1), 465 (2011)

    Article  Google Scholar 

  6. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 543–584. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    Article  MATH  Google Scholar 

  8. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 25–42. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. PODC 2006, 292–299 (2006)

    Google Scholar 

  10. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Phillips, A., Kugler, H.: Functional analysis of large-scale DNA strand displacement circuits. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 189–203. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Han, T., Katoen, J., Mereacre, A.: Approximate parameter synthesis for probabilistic time-bounded reachability. In: Real-Time Systems Symposium, pp. 173–182, IEEE (2008)

    Google Scholar 

  14. Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter synthesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014)

    Google Scholar 

  15. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

    Article  MATH  Google Scholar 

  16. Perron, E., Vasudevan, D., Vojnovic, M.: Using three states for binary consensus on complete graphs. In: IEEE Infocom 2009, IEEE Communications Society (2009)

    Google Scholar 

  17. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)

    Article  Google Scholar 

  18. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  20. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  21. Norris, J.R.: Continuous-time Markov Chains. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  22. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Determining majority in networks with local interactions and very small local memory. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 871–882. Springer, Heidelberg (2014)

    Google Scholar 

  23. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2(656) (2012)

    Google Scholar 

  24. Scialdone, A., Mugford, S.T., Feike, D., Skeffington, A., Borrill, P., et al.: Arabidopsis plants perform arithmetic division to prevent starvation at night. eLife 2, e00669 (2013)

    Article  Google Scholar 

  25. Soyer, O.S., Bonhoeffer, S.: Evolution of complexity in signaling pathways. PNAS 103(44), 16337–16342 (2006)

    Article  Google Scholar 

  26. Dinh, H., Aubert, N., Noman, N., Fujii, T., Rondelez, Y., Iba, H.: An effective method for evolving reaction networks in synthetic biochemical systems. IEEE Trans. Evol. Comput. 19(3), 374–386 (2014)

    Article  Google Scholar 

  27. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  28. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, vol. 282. Wiley, New York (2009)

    Google Scholar 

Download references

Acknowledgements

We thank Dan Alistarh and Luca Cardelli for helpful discussions on the development and applications of our methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dalchau, N., Murphy, N., Petersen, R., Yordanov, B. (2015). Synthesizing and Tuning Chemical Reaction Networks with Specified Behaviours. In: Phillips, A., Yin, P. (eds) DNA Computing and Molecular Programming. DNA 2015. Lecture Notes in Computer Science(), vol 9211. Springer, Cham. https://doi.org/10.1007/978-3-319-21999-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21999-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21998-1

  • Online ISBN: 978-3-319-21999-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics