Skip to main content

Automated Design and Verification of Localized DNA Computation Circuits

  • Conference paper
  • First Online:
Book cover DNA Computing and Molecular Programming (DNA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9211))

Included in the following conference series:

Abstract

Simple computations can be performed using the interactions between single-stranded molecules of DNA. These interactions are typically toehold-mediated strand displacement reactions in a well-mixed solution. We demonstrate that a DNA circuit with tethered reactants is a distributed system and show how it can be described as a stochastic Petri net. The system can be verified by mapping the Petri net onto a continuous time Markov chain, which can also be used to find an optimal design for the circuit. This theoretical machinery can be applied to create software that automatically designs a DNA circuit, linking an abstract propositional formula to a physical DNA computation system that is capable of evaluating it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bath, J., Green, S.J., Turberfield, A.J.: A free-running DNA motor powered by a nicking enzyme. Angew. Chem. 117, 4432–4435 (2005)

    Article  Google Scholar 

  2. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  3. Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.J.: DNA walker circuits: computational potential, design, and verification. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 31–45. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Joyner, D., Čertík, O., Meurer, A., Granger, B.E.: Open source computer algebra systems: SymPy. ACM Commun. Comput. Algebra 45, 225–234 (2011)

    Article  Google Scholar 

  5. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27, 3211–3213 (2011)

    Article  Google Scholar 

  7. Lakin, M.R., Petersen, R., Gray, K.E., Phillips, A.: Abstract modelling of tethered DNA circuits. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 132–147. Springer, Heidelberg (2014)

    Google Scholar 

  8. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. J. R. Soc. Interface 6, S419–S436 (2009)

    Article  Google Scholar 

  9. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  10. Wickham, S.F.J., Bath, J., Katsuda, Y., Endo, M., Hidaka, K., Sugiyama, H., Turberfield, A.J.: A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012)

    Article  Google Scholar 

  11. Yin, P., Turberfield, A.J., Sahu, S., Reif, J.H.: Design of an autonomous DNA nanomechanical device capable of universal computation and universal translational motion. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 426–444. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M., Pierce, N.A.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Andrew Phillips (Microsoft Research Cambridge), Marta Kwiatkowska (Oxford Computer Science), Alex Lucas (Oxford Physics), and Jonathan Bath (Oxford Physics) for guidance and helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Boemo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Boemo, M.A., Turberfield, A.J., Cardelli, L. (2015). Automated Design and Verification of Localized DNA Computation Circuits. In: Phillips, A., Yin, P. (eds) DNA Computing and Molecular Programming. DNA 2015. Lecture Notes in Computer Science(), vol 9211. Springer, Cham. https://doi.org/10.1007/978-3-319-21999-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21999-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21998-1

  • Online ISBN: 978-3-319-21999-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics