Skip to main content

Fate of Trace Metals in Anaerobic Digestion

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 151))

Abstract

A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments—often agricultural lands receiving discharge waters from anaerobic digestion processes—simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Appels L, Lauwers J, Degrve J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011) Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sustain Energy Rev 15(9):4295–4301

    Article  CAS  Google Scholar 

  2. Lettinga G (2005) The anaerobic treatment approach towards a more sustainable and robust environmental protection, p 1–11

    Google Scholar 

  3. Verstraete W, Van de Caveye P, Diamantis V (2009) Maximum use of resources present in domestic “used water”. Bioresour Technol 100(23):5537–5545

    Article  CAS  Google Scholar 

  4. Zeeman G, Kujawa K, de Mes T, Hernandez L, de Graaff M, Abu-Ghunmi L, Mels A, Meulman B, Temmink H, Buisman C, van Lier J, Lettinga G (2008) Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water), p 1207–1212

    Google Scholar 

  5. Nichols CE (2004) Overview of anaerobic digestion technologies in Europe. BioCycle, 2004. 45(1):47–48 + 50–53

    Google Scholar 

  6. Cameron I (2007) Biogas market comes on strong. Diesel Gas Turbine Worldwide 39(5):10–13

    Google Scholar 

  7. Chong S, Sen TK, Kayaalp A, Ang HM (2012) The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment—a State-of-the-art review. Water Res 46(11):3434–3470

    Article  CAS  Google Scholar 

  8. Chanakya HN, Malayil S (2012) Anaerobic digestion for bioenergy from agro-residues and other solid wastes—An overview of science, technology and sustainability. J Indian Inst Sci 92(1):111–143

    CAS  Google Scholar 

  9. Zandvoort MM, van Hullebusch ED, Fermoso FG, Lens P (2006) Trace metals in anaerobic granular sludge reactors: Bioavailability and dosing strategies. Eng Life Sci 6(3):293–301

    Article  CAS  Google Scholar 

  10. Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Frontiers in Microbiology, 3

    Google Scholar 

  11. Worm P, Fermoso FG, Lens PNL, Plugge CM (2009) Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium. Enzyme Microb Technol 45(2):139–145

    Article  CAS  Google Scholar 

  12. Zandvoort MH, van Hullebusch ED, Gieteling J, Lens PNL (2006) Granular sludge in full-scale anaerobic bioreactors: Trace element content and deficiencies. Enzyme Microb Technol 39(2):337–346

    Article  CAS  Google Scholar 

  13. Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35(3):992–998

    Article  CAS  Google Scholar 

  14. Facchin V, Cavinato C, Pavan P, Bolzonella D (2013) Batch and continuous mesophilic anaerobic digestion of food waste: Effect of trace elements supplementation. Chem Eng Trans 32:457–462

    Google Scholar 

  15. Banks CJ, Zhang Y, Jiang Y, Heaven S (2012) Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol 104:127–135

    Article  CAS  Google Scholar 

  16. van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev Environ Sci Biotechnol 2(1):9–33

    Article  Google Scholar 

  17. Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng Life Sci 12(3):242–257

    Article  Google Scholar 

  18. Yekta SS, Svensson BH, Björn A, Skyllberg U (2014) Thermodynamic modeling of iron and trace metal solubility and specia-tion under sulfidic and ferruginous conditions in full scale continuous stirred tank biogas reactors. Appl Geochem (In press)

    Google Scholar 

  19. Jansen S (2004) Speciation and bioavailability of cobalt and nickel in anaerobic wastewater treatment. In: Leerstoelgroep Fysische Chemie en Kolloidkunde. 2004, Wageningen University

    Google Scholar 

  20. Gustavsson J, Yekta SS, Sundberg C, Karlsson A, Ejlertsson J, Skyllberg U, Svensson BH (2013) Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Appl Energy 112:473–477

    Google Scholar 

  21. Zandvoort MH, van Hullebusch ED, Gieteling J, Lettinga G, Lens PNL (2005) Effect of sulfur source on the performance and metal retention of methanol-fed UASB reactors. Biotechnol Prog 21(3):839–850

    Article  CAS  Google Scholar 

  22. Yekta SS, Lindmark A, Skyllberg U, Danielsson T, Svensson BH (2014) Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage. J Hazard Mater 269:83–88

    Google Scholar 

  23. Kenney JPL, Fein JB (2011) Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and cd adsorption experiments. Environ Sci Technol 45(10):4446–4452

    Article  CAS  Google Scholar 

  24. d’Abzac P, Bordas F, van Hullebusch ED, Lens PNL, Guibaud G (2010) Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges. Colloids Surf B 80(2):161–168

    Article  Google Scholar 

  25. Aquino SF, Stuckey DC (2007) Bioavailability and toxicity of metal nutrients during anaerobic digestion. J Environ Eng 133(1):28–35

    Article  CAS  Google Scholar 

  26. Gonzalez-Gil G, Jansen S, Zandvoort M, van Leeuwen HP (2003) Effect of yeast extract on speciation and bioavailability of nickel and cobalt in anaerobic bioreactors. Biotechnol Bioeng 82(2):134–142

    Article  CAS  Google Scholar 

  27. Bartacek J, Fermoso FG, Baldo-Urrutia AM, van Hullebusch ED, Lens PNL (2008) Cobalt toxicity in anaerobic granular sludge: Influence of chemical speciation. J Ind Microbiol Biotechnol 35(11):1465–1474

    Article  CAS  Google Scholar 

  28. Fermoso FG, Bartacek J, Chung LC, Lens P (2008) Supplementation of cobalt to UASB reactors by pulse dosing: CoCl2 versus CoEDTA2- pulses. Biochem Eng J 42(2):111–119

    Article  CAS  Google Scholar 

  29. d’Abzac P, Bordas F, Joussein E, van Hullebusch ED, Lens PNL, Guibaud G (2013) Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges. Environ Sci Pollut Res 20(7):4509–4519

    Article  Google Scholar 

  30. Yekta SS, Gustavsson J, Svensson BH, Skyllberg U (2012) Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors. Talanta 89:470–477

    Google Scholar 

  31. Li X, Dai X, Takahashi J, Li N, Jin J, Dai L, Dong B (2014) New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy. Bioresour Technol 159:412–420

    Article  CAS  Google Scholar 

  32. Van der Veen A, Fermoso FG, Lens P (2007) Bonding form analysis of metals and sulfur fractionation in methanol-grown anaerobic granular sludge engineering in life. Science 7(5):480–489

    Google Scholar 

  33. van Hullebusch ED, Rossano S, Farges F, Lenz M, Labanowski J, Lagarde P, Flank A-M, Lens PNL (2009) Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur chemical state in anaerobic granular biofilms. In: 14th international conference on X-ray absorption fine structure (XAFS14), Camerino, Italy

    Google Scholar 

  34. Pinheiro JP, Galceran J, Van Leeuwen HP (2004) Metal speciation dynamics and bioavailability: bulk depletion effects. Environ Sci Technol 38(8):2397–2405

    Article  CAS  Google Scholar 

  35. Temminghoff EJM, Plette ACC, Van Eck R, Van Riemsdijk WH (2000) Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique. Anal Chim Acta 417(2):149–157

    Article  CAS  Google Scholar 

  36. Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367(6463):546

    Article  CAS  Google Scholar 

  37. Feng XM, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste—Linking process to microbial communities. FEMS Microbiol Ecol 74(1):226–240

    Article  CAS  Google Scholar 

  38. Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6(8):604–612

    Article  CAS  Google Scholar 

  39. Tomei MC, Braguglia CM, Cento G, Mininni G (2009) Modeling of Anaerobic digestion of sludge. Crit Rev Environ Sci Technol 39(12):1003–1051

    Article  CAS  Google Scholar 

  40. Fermoso FG, Collins G, Bartacek J, O’Flaherty V, Lens P (2008) Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: induction and microbial community dynamics. Biotechnol Bioeng 99(1):49–58

    Article  CAS  Google Scholar 

  41. Fermoso FG, Collins G, Bartacek J, Lens PNL (2008) Zinc deprivation of methanol fed anaerobic granular sludge bioreactors. J Ind Microbiol Biotechnol 35(6):543–557

    Article  CAS  Google Scholar 

  42. Verstraete W, Wittebolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7(2):117–126

    Article  CAS  Google Scholar 

  43. Kazakov AE, Rajeev L, Luning EG, Zane GM, Siddartha K, Rodionov DA, Dubchak I, Arkin AP, Wall JD, Mukhopadhyay A, Novichkov PS (2013) New family of tungstate-responsive transcriptional regulators in sulfate-reducing bacteria. J Bacteriol 195(19):4466–4475

    Article  CAS  Google Scholar 

  44. Siggins A, Gunnigle E, Abram F (2012) Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol 80(2):265–280

    Article  CAS  Google Scholar 

  45. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619–626

    Article  CAS  Google Scholar 

  46. Carrigg C, Rice O, Kavanagh S, Collins G, O’Flaherty V (2007) DNA extraction method affects microbial community profiles from soils and sediment. Appl Microbiol Biotechnol 77(4):955–964

    Article  CAS  Google Scholar 

  47. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67(1):6–20

    Article  CAS  Google Scholar 

  48. Myint MS, Johnson YJ, Tablante NL, Heckert RA (2006) The effect of pre-enrichment protocol on the sensitivity and specificity of PCR for detection of naturally contaminated Salmonella in raw poultry compared to conventional culture. Food Microbiol 23(6):599–604

    Article  CAS  Google Scholar 

  49. Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96(7):3404–3411

    Article  CAS  Google Scholar 

  50. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta Biomembr 1778(9):1781–1804

    Article  CAS  Google Scholar 

  51. Saito MA, Moffett JW, Chisholm SW, Waterbury JB (2002) Cobalt limitation and uptake in Prochlorococcus. J Limnol Oceanogr 47(6):1629–1636

    Google Scholar 

  52. Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7(1):25–35

    Article  CAS  Google Scholar 

  53. Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187(8):2912–2916

    Article  CAS  Google Scholar 

  54. Fermoso FG, Bartacek J, Manzano R, van Leeuwen HP, Lens PN (2010) Dosing of anaerobic granular sludge bioreactors with cobalt: impact of cobalt retention on methanogenic activity. Bioresour Technol 101(24):9429–9437

    Article  CAS  Google Scholar 

  55. Ishaq F, Bridgeman J, Carliell-Marquet CM (2013) Site energy performance as an indicator for trace element deficiency in full-scale digesters. In: 13th world congress on anaerobic digestion (IWA specialist conference). Santiago de Compostela, Spain

    Google Scholar 

  56. Fermoso FG, Bartacek J, Jansen S, Lens PN (2009) Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Sci Total Environ 407(12):3652–3667

    Article  CAS  Google Scholar 

  57. Jansen S, Gonzalez-Gil G, van Leeuwen HP (2007) The impact of Co and Ni speciation on methanogenesis in sulfidic media - Biouptake versus metal dissolution. Enzyme Microb Technol 40(4):823–830

    Article  CAS  Google Scholar 

  58. Nges IA, Björnsson L (2012) High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass Bioenergy 47:62–70

    Article  CAS  Google Scholar 

  59. Nges IA, Björn A, Björnsson L (2012) Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage. Bioresour Technol 118:445–454

    Article  CAS  Google Scholar 

  60. Pobeheim H, Munk B, Lindorfer H, Guebitz GM (2011) Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res 45(2):781–787

    Article  CAS  Google Scholar 

  61. Lindorfer H, Ramhold D, Frauz B (2012) Nutrient and trace element supply in anaerobic digestion plants and effect of trace element application. Water Sci Technol 66(9):1923–1929

    Article  CAS  Google Scholar 

  62. Hinken L, Urban I, Haun E, Weichgrebe D, Rosenwinkel KH (2008) The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests. Water Sci Technol 58:1453–1459

    Google Scholar 

  63. Carliell-Marquet C, Smith J, Oikonomidis I, Wheatley A (2010) Inorganic profiles of chemical phosphorus removal sludge. Proc Inst Civil Eng Water Manag 163(2):65–77

    Article  Google Scholar 

  64. Holmes J (1999) Fate of incorporated metals during mackinawite oxidation in sea water. Appl Geochem 14(3):277–281

    Article  CAS  Google Scholar 

  65. Mayer TD, Jarrell WM (2000) Phosphorus sorption during iron(II) oxidation in the presence of dissolved silica. Water Res 34(16):3949–3956

    Article  CAS  Google Scholar 

  66. Simpson SL, Apte SG, Batley GE (2000) Effect of short-term resuspension events on the oxidation of cadmium, lead, and zinc sulfide phases in anoxic estuarine sediments. Environ Sci Technol 34(21):4533–4537

    Article  CAS  Google Scholar 

  67. Xiang L, Chan LC, Wong JWC (2000) Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere 41(1–2):283–287

    Article  CAS  Google Scholar 

  68. Vink JPM, Meeussen JCL (2007) BIOCHEM-ORCHESTRA: A tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems. Environ Pollut 148(3):833–841

    Article  CAS  Google Scholar 

  69. Christensen JB, Christensen TH (1999) Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2). Environ Sci Technol 33(21):3857–3863

    Article  CAS  Google Scholar 

  70. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20(10):2383–2396

    Article  Google Scholar 

  71. Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32(2):199–205

    Article  CAS  Google Scholar 

  72. Siegrist H, Brunner I, Koch G, Phan LC, Van Le C (1999) Reduction of biomass decay rate under anoxic and anaerobic conditions. Water Sci Technol 39:129–137

    Google Scholar 

  73. Vink JPM, Harmsen J, Rijnaarts H (2010) Delayed immobilization of heavy metals in soils and sediments under reducing and anaerobic conditions; consequences for flooding and storage. J Soils Sediments 10(8):1633–1645

    Article  CAS  Google Scholar 

  74. Ankley GT, Di Toro DM, Hansen DJ, Berry WJ (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem 15(12):2056–2066

    Article  CAS  Google Scholar 

  75. Bergman HL, Dorward-King EJ (1997) Reassessment of metals criteria for aquatic life protection: priorities for research and implementation. In: Proceedings of the pellston workshop on reassessment of metals criteria for aquatic life protection, pp 10–14 February 1996, Pensacola, Florida, SETAC Press

    Google Scholar 

  76. Renner R (1997) Rethinking water quality standards for metals toxicity. Environ Sci Technol 31(10):465A–468A

    Article  Google Scholar 

  77. EU (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council, p 14

    Google Scholar 

  78. Pagenkopf GK (1983) Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pM, and water hardness. Environ Sci Technol 17(6):342–347

    Article  CAS  Google Scholar 

  79. Pagenkopf GK, Russo RC, Thurston RV (1974) Effect of complexation on toxicity of copper to fishes. J Fish Res Board Canada 31(4):462–465

    Article  CAS  Google Scholar 

  80. Hollis L, Burnison K, Playle RC (1996) Does the age of metal-dissolved organic carbon complexes influence binding of metals to fish gills? Aquat Toxicol 35(3–4):253–264

    Article  CAS  Google Scholar 

  81. Janes N, Playle RC (1995) Modeling silver binding to gills of rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 14(11):1847–1858

    Article  CAS  Google Scholar 

  82. Playle RC (1998) Modelling metal interactions at fish gills. Sci Total Environ 219(2–3):147–163

    Article  CAS  Google Scholar 

  83. Richards JG, Playle RC (1998) Cobalt binding to gills of rainbow trout (Oncorhynchus mykiss): An equilibrium model. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 119(2):185–197

    Article  CAS  Google Scholar 

  84. Wood CM, Playle RC, Hogstrand C (1999) Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ Toxicol Chem 18(1):71–83

    Article  CAS  Google Scholar 

  85. Morel F (1983) Principles of aquatic chemistry. Wiley, New York

    Google Scholar 

  86. Campbell PG (1995) In Interactions between trace metals and aquatic organ-isms: A critique of the free-ion activity model, in Metal Speciation and Bioavailability in AquaticSystems. In: Tessier A, Turner D (eds), John Wiley: New York, NY, USA. p. 45–102

    Google Scholar 

  87. Meyer JS (1999) A mechanistic explanation for the In(LC50) vs In(hardness) adjustment equation for metals. Environ Sci Technol 33(6):908–912

    Article  CAS  Google Scholar 

  88. Paquin PR, di Toro DM, Santore RC, Trivedi D, Wu KB (1999) A Biotic Ligand Model of the Acute Toxicity of Metals: III. Application to Fish and Daphnia Exposure to Silver. In: Integrated Approach to Assessing the Bioavailability and Toxicity of Metals in Surface Waters and Sediments. U.E. EPA-822-E-99-001, Editor. 1999: Washington, DC, p 3-59–3-102

    Google Scholar 

  89. Vink JPM (2009) The origin of speciation: Trace metal kinetics over natural water/sediment interfaces and the consequences for bioaccumulation. Environ Pollut 157(2):519–527

    Article  CAS  Google Scholar 

  90. Vink JPM (2002) Measurement of heavy metal speciation over redox gradients in natural water-sediment interfaces and implications for uptake by benthic organisms. Environ Sci Technol 36(23):5130–5138

    Article  CAS  Google Scholar 

  91. Niyogi S, Kent R, Wood CM (2008) Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): A biotic ligand model (BLM) approach. Comp Biochem Physiol C Toxicol Pharmacol 148(4):305–314

    Article  Google Scholar 

  92. Vijver MG, De Koning A, Peijnenburg WJGM (2008) Uncertainty of water type-specific hazardous copper concentrations derived with biotic ligand models. Environ Toxicol Chem 27(11):2311–2319

    Article  CAS  Google Scholar 

  93. Verschoor AJ, Vink JPM, De Snoo GR, Vijver MG (2011) Spatial and temporal variation of watertype-specific no-effect concentrations and risks of Cu, Ni, and Zn. Environ Sci Technol 45(14):6049–6056

    Article  CAS  Google Scholar 

  94. Hill D, Barth C (1977) A dynamic model for simulation of animal waste digestion. J (Water Pollut Control Fed) 49:2129–2143

    Google Scholar 

  95. Kalyuzhnyi S, Davlyatshina M (1997) Batch anaerobic digestion of glucose and its mathematical modeling. I. Kinetic investigations. Bioresour Technol 59(1):73–80

    Article  CAS  Google Scholar 

  96. Mosey F (1983) Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci Technol 15(8–9):209–232

    CAS  Google Scholar 

  97. Costello D, Greenfield P, Lee PL (1991) Dynamic modelling of a single-stage high-rate anaerobic reactor—I. Model derivation. Water Res 25(7):847–858

    Article  CAS  Google Scholar 

  98. Batstone D, Keller J, Newell R, Newland M (2000) Modelling anaerobic degradation of complex wastewater. I: model development. Bioresour Technol 75(1):67–74

    Article  CAS  Google Scholar 

  99. Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42(2):159–166

    Article  CAS  Google Scholar 

  100. Vavilin V, Vasiliev V, Ponomarev A, Rytow S (1994) Simulation model ‘methane’as a tool for effective biogas production during anaerobic conversion of complex organic matter. Bioresour Technol 48(1):1–8

    Article  CAS  Google Scholar 

  101. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WT, Siegrist H, Vavilin VA (2002) The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol 45(10):65–73

    CAS  Google Scholar 

  102. Fuentes M, Scenna NJ, Aguirre PA, Mussati MC (2008) Application of two anaerobic digestion models to biofilm systems. Biochem Eng J 38(2):259–269

    Article  CAS  Google Scholar 

  103. Fedorovich V, Lens P, Kalyuzhnyi S (2003) Extension of anaerobic digestion model no. 1 with processes of sulfate reduction. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 109(1–3):33–45

    Google Scholar 

  104. Batstone DJ, Keller J (2003) Industrial applications of the IWA anaerobic digestion model No. 1 (ADM1). Water Sci Technol 47:199–206

    Google Scholar 

  105. Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res 39(1):171–183

    Article  CAS  Google Scholar 

  106. Lübken M, Wichern M, Schlattmann M, Gronauer A, Horn H (2007) Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Res 41(18):4085–4096

    Article  Google Scholar 

  107. Esposito G, Frunzo L, Panico A, d’Antonio G (2008) Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge. Water Sci Technol 58(7):1513–1519

    Article  CAS  Google Scholar 

  108. García-Gen S, Sousbie P, Rangaraj G, Lema JM, Rodríguez J, Steyer JP, Torrijos M (2015) Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes. Waste Manag 35:96–104

    Article  Google Scholar 

  109. Esposito G, Frunzo L, Panico A, Pirozzi F (2011) Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46(2):557–565

    Article  CAS  Google Scholar 

  110. Barrera EL, Spanjers H, Solon K, Amerlinck Y, Nopens I, Dewulf J (2015) Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Res 71:42–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding within the framework of the COST Action 1302 (‘European Network on Ecological Roles of Trace Metals in Anaerobic Biotechnologies’). GC is supported by a European Research Council Starting Grant (‘3C-BIOTECH; No. 261330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Fermoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fermoso, F.G. et al. (2015). Fate of Trace Metals in Anaerobic Digestion. In: Guebitz, G., Bauer, A., Bochmann, G., Gronauer, A., Weiss, S. (eds) Biogas Science and Technology. Advances in Biochemical Engineering/Biotechnology, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-21993-6_7

Download citation

Publish with us

Policies and ethics