Skip to main content

Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 151))

Abstract

Direct interspecies electrons transfer (DIET) is a syntrophic metabolism in which free electrons flow from one cell to another without being shuttled by reduced molecules such as molecular hydrogen or formate. As more and more microorganisms show a capacity for electron exchange, either to export or import them, it becomes obvious that DIET is a syntrophic metabolism that is much more present in nature than previously thought. This article reviews literature related to DIET, specifically in reference to anaerobic digestion. Anaerobic granular sludge, a biofilm, is a specialized microenvironment where syntrophic bacterial and archaeal organisms grow together in close proximity. Exoelectrogenic bacteria degrading organic substrates or intermediates need an electron sink and electrotrophic methanogens represent perfect partners to assimilate those electrons and produce methane. The granule extracellular polymeric substances by making the biofilm matrix more conductive, play a role as electrons carrier in DIET.

NRC paper No. 55668

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84:260–276

    Article  Google Scholar 

  2. Arends JBA, Verstraete W (2011) 100 years of microbial electricity production: three concepts for the future. Microb Biotechnol 5:333–346

    Article  Google Scholar 

  3. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  Google Scholar 

  4. Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332

    Article  CAS  Google Scholar 

  5. Kurakin A (2011) The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor Biol Med Model 8:1–66

    Article  Google Scholar 

  6. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 9:568–577

    Article  Google Scholar 

  7. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol 59:20–31

    Article  CAS  Google Scholar 

  8. Thiele JH, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl Environ Microbiol 54:20–29

    CAS  Google Scholar 

  9. Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of K m for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741

    CAS  Google Scholar 

  10. Schink B (2008) Energetic aspects of methanogenic feeding webs. In: Wall JD, Harwood CS, Demain AL (eds) Bioenergy. ASM Press, Washington, pp 171–178

    Chapter  Google Scholar 

  11. Stams AJM, De Bok FAM, Plugge CM, Van Eekert MHA, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8:371–382

    Article  CAS  Google Scholar 

  12. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28

    Article  CAS  Google Scholar 

  13. Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734

    Article  CAS  Google Scholar 

  14. Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K (2005) Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol 71:7838–7845

    Article  CAS  Google Scholar 

  15. Guiot SR, Pauss A, Costerton JW (1992) A structured model of the anaerobic granule consortium. Water Sci Technol 25(7):1–10

    CAS  Google Scholar 

  16. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  Google Scholar 

  17. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan BE, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363

    Article  CAS  Google Scholar 

  18. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958

    Article  CAS  Google Scholar 

  19. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  Google Scholar 

  20. Nealson KH (2010) Geomicrobiology: Sediment reactions defy dogma. Nature 463:1033–1034

    Article  CAS  Google Scholar 

  21. Lovley DR, Nevin KP (2011) A shift in the current: New applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol 22:441–448

    Article  CAS  Google Scholar 

  22. Pauss A, Samson R, Guiot SR (1990) Thermodynamic evidence of trophic microniches in methanogenic granular sludge-bed reactors. Appl Microbiol Biotechnol 33:88–92

    Article  CAS  Google Scholar 

  23. Guiot SR, MacLeod FA, Pauss A (1990) Thermodynamical and microbiological evidence of trophic microniches for propionate degradation in a methanogenic sludge-bed reactor. In: Belaich J-P, Bruschi M, Garcia J-L (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Federation of European Microbiological Societies Symposium Series, vol 54. Plenum Press, New York, pp 173–183

    Google Scholar 

  24. Frigon J-C, Guiot SR (1995) Impact of liquid-to-gas hydrogen mass transfer on substrate conversion efficiency of a upflow anaerobic sludge bed and filter reactor. Enzyme Microbiol Technol 17:1080–1086

    Article  CAS  Google Scholar 

  25. Picioreanu C, Batstone DJ, van Loosdrecht MCM (2005) Multidimensional modelling of anaerobic granules. Water Sci Technol 52:501–507

    CAS  Google Scholar 

  26. Ishii S, Kosaka T, Hotta Y, Watanabe K (2006) Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia. Appl Environ Microbiol 72:5093–5096

    Article  CAS  Google Scholar 

  27. MacLeod FA, Guiot SR, Costerton JW (1990) Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56:1298–1307

    Google Scholar 

  28. Rocheleau S, Greer CW, Lawrence JR, Cantin C, Laramée L, Guiot SR (1999) Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by using fluorescent in situ hybridization and confocal scanning laser microscopy. Appl Environ Microbiol 65:2222–2229

    CAS  Google Scholar 

  29. Satoh H, Miura Y, Tsushima I, Okabe S (2007) Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules. Appl Environ Microbiol 73:7300–7307

    Article  CAS  Google Scholar 

  30. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

    CAS  Google Scholar 

  31. Diaz EE, Stams AJM, Amils R, Sanz JL (2006) Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Environ Microbiol 72:4942–4949

    Article  CAS  Google Scholar 

  32. Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7:408–415

    Article  CAS  Google Scholar 

  33. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415

    Article  CAS  Google Scholar 

  34. Juárez K, Kim BC, Nevin K, Olvera L, Reguera G, Lovley DR, Methé BA (2009) PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens. J Mol Microbiol Biotechnol 16:146–158

    Article  Google Scholar 

  35. Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methé BA, Liu A, Ward JE, Woodard TL, Webster J, Lovley DR (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8:1805–1815

    Article  CAS  Google Scholar 

  36. Shimoyama T, Kato S, Ishii S, Watanabe K (2009) Flagellum mediates symbiosis. Science 323:1574

    Article  CAS  Google Scholar 

  37. Kato S, Watanabe K (2010) Ecological and evolutionary interactions in syntrophic methanogenic consortia. Microbes Environ 25:145–151

    Article  Google Scholar 

  38. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195

    Article  CAS  Google Scholar 

  39. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  Google Scholar 

  40. Tikhonova TV, Popov VO (2014) Structural and functional studies of multiheme cytochromes c involved in extracellular electron transport in bacterial dissimilatory metal reduction. Biochemistry (Moscow) 79:1584–1601

    Article  CAS  Google Scholar 

  41. Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68:2294–2299

    Article  CAS  Google Scholar 

  42. Seeliger S, Cord-Ruwisch R, Schink B (1998) A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol 180:3686–3691

    CAS  Google Scholar 

  43. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  Google Scholar 

  44. Schmidt JE, Ahring BK (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49:229–246

    Article  CAS  Google Scholar 

  45. Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Ann Rev Biochem 79:507–536

    Article  CAS  Google Scholar 

  46. Kaster A-K, Goenrich M, Seedorf H, Liesegang H, Wollherr A, Gottschalk G, Thauer RK (2011) More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea 11:1–23

    Article  Google Scholar 

  47. Daniels L, Belay N, Rajagopal BS, Weimer PJ (1987) Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511

    Article  CAS  Google Scholar 

  48. Chastain BK, Kral TA (2010) Zero-valent iron on Mars: an alternative energy source for methanogens. Icarus 208:198–201

    Article  CAS  Google Scholar 

  49. Dinh HT, Kuever J, Mußmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    Article  CAS  Google Scholar 

  50. Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S (2010) Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76:1783–1788

    Article  CAS  Google Scholar 

  51. Karri S, Sierra-Alvarez R, Field JA (2005) Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnol Bioeng 92:810–819

    Article  CAS  Google Scholar 

  52. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604

    Article  CAS  Google Scholar 

  53. Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour Technol 102:324–333

    Article  CAS  Google Scholar 

  54. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  Google Scholar 

  55. Welte C, Kallnik V, Grapp M, Bender G, Ragsdale S, Deppenmeier U (2010) Function of Ech hydrogenase in ferredoxin-dependent, membrane-bound electron transport in Methanosarcina mazei. J Bacteriol 192:674–678

    Article  CAS  Google Scholar 

  56. Gottschalk G, Blaut M (1990) Generation of proton and sodium motive forces in methanogenic bacteria. BBA-Bioenerg 1018:263–266

    Article  CAS  Google Scholar 

  57. Rotaru A-E, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605

    Article  Google Scholar 

  58. Chen S, Rotaru AE, Liu F, Philips J, Woodard TL, Nevin KP, Lovley DR (2014) Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour Technol 173:82–86

    Article  CAS  Google Scholar 

  59. Ferguson TJ, Mah RA (1983) Effect of H2-CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl Environ Microbiol 46:348–355

    CAS  Google Scholar 

  60. Kato S, Yumoto I, Kamagata Y (2015) Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol 81:67–73

    Article  Google Scholar 

  61. Baloch MI, Akunna JC, Kierans M, Collier PJ (2008) Structural analysis of anaerobic granules in a phase separated reactor by electron microscopy. Bioresour Technol 99:922–929

    Article  CAS  Google Scholar 

  62. Ntarlagiannis D, Atekwana EA, Hill EA, Gorby Y (2007) Microbial nanowires: Is the subsurface “hardwired”? Geophys Res Lett 34:1–5

    Article  Google Scholar 

  63. Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263–290

    Article  CAS  Google Scholar 

  64. Busalmen JP, Esteve-Núñez A, Berná A, Feliu JM (2008) C-type cytochromes wire electricity-producing bacteria to electrodes. Angew Chem Int Ed Engl 47:4874–4877

    Article  CAS  Google Scholar 

  65. Cohen H, Nogues C, Naaman R, Porath D (2005) Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc Nat Acad Sci USA 102:11589–11593

    Article  CAS  Google Scholar 

  66. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973

    Article  CAS  Google Scholar 

  67. Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463:1071–1074

    Article  CAS  Google Scholar 

  68. Schauer R, Risgaard-Petersen N, Kjeldsen KU, Tataru Bjerg JJ, Jørgensen BB, Schramm A, Nielsen LP (2014) Succession of cable bacteria and electric currents in marine sediment. ISME J 8:1314–1322

    Article  CAS  Google Scholar 

  69. Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El-Naggar MY, Leung KM, Schramm A, Risgaard-Petersen N, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–221

    Article  CAS  Google Scholar 

  70. Malvankar NS, King GM, Lovley DR (2015) Centimeter-long electron transport in marine sediments via conductive minerals. ISME J 9:527–531

    Article  CAS  Google Scholar 

  71. Esteve-Núñez A, Sosnik J, Visconti P, Lovley DR (2008) Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. Environ Microbiol 10:497–505

    Article  Google Scholar 

  72. Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio 2:e00159–11

    Google Scholar 

  73. Shrestha PM, Malvankar NS, Werner JJ, Franks AE, Rotaru A-E, Shrestha M, Liu F, Nevin KP, Angenent LT, Lovley DR (2014) Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment. Bioresour Technol 174:306–310

    Article  CAS  Google Scholar 

  74. Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F (2014) Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ Sci Technol 48:7536–7543

    Article  CAS  Google Scholar 

  75. Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989

    Article  CAS  Google Scholar 

  76. Chen S, Rotaru AE, Shrestha PM, Malvankar NS, Liu F, Fan W, Nevin KP, Lovley DR (2014) Promoting interspecies electron transfer with biochar. Sci Rep 4:5019

    CAS  Google Scholar 

  77. Dubé C-D, Guiot SR (2014) Direct interspecies electron transfer investigation in granular sludge. In: Gübitz GM, Gronauer A, Bauer A, Bochman G, Scheidl S, Weiß S (eds) Int Conf on Anaerobic Digestion, Biogas Science 2014, Vienna, Austria, 2014. University of Natural resources and Life Sciences, Vienna, Austria, pp 85–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge R. Guiot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubé, CD., Guiot, S.R. (2015). Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review. In: Guebitz, G., Bauer, A., Bochmann, G., Gronauer, A., Weiss, S. (eds) Biogas Science and Technology. Advances in Biochemical Engineering/Biotechnology, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-21993-6_4

Download citation

Publish with us

Policies and ethics