Skip to main content

Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 151))

Abstract

Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BB:

Bead-beating

BMP:

Biological/biochemical methane potential

BLAST:

Basic local alignment search tool

Bp:

Base pair(s)

cDNA:

Complementary DNA (transcribed from RNA species)

CLSM:

Confocal laser scanning microscopy

COD:

Chemical oxygen demand

DGGE:

Denaturing-gradient gel electrophoresis

DNA:

Deoxyribonucleic acid

FISH:

Fluorescence in situ hybridization

LCB:

Lignocellulosic biomass

LM:

Light microscopy

MQ:

Metabolic quotient

mRNA:

Messenger RNA

NA:

Nucleic acid(s)

NGS:

Next generation sequencing

OLR:

Organic loading rate

PC(o)A:

Principal coordinate/Principal component analysis

PCR:

Polymerase chain reaction

PSM:

Process simulation model

qPCR:

Quantitative Real-Time PCR

rDNA:

Ribosomal deoxyribonucleic acid

RNA:

Ribonucleic acid

rRNA:

Ribosomal ribonucleic acid

RT:

Reverse transcription

SCFA:

Short-chain fatty acid(s) or also VFA

SEM:

Scanning electron microscopy

SMA:

Specific methanogenic activity

TEM:

Transmission electron microscopy

TGGE:

Temperature-gradient gel electrophoresis

TVA/TIC:

Total volatile acids/total inorganic carbon

VFA:

Volatile fatty acids

VOA:

Volatile organic acids

References

  1. Schink B (2006) Syntrophic associations in methanogenic degradation. In: Molecular basis of symbiosis, vol 41. Springer, Berlin, pp 1–19

    Google Scholar 

  2. McInerney MJ, Struchtemeyer CG, Sieber JR, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  CAS  Google Scholar 

  3. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190

    Article  CAS  Google Scholar 

  4. Lebuhn M, Munk B, Effenberger M (2014) Agricultural biogas production in Germany—from practice to microbiology basics. Energy Sustain Soc 4(10):21

    Google Scholar 

  5. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591

    Article  CAS  Google Scholar 

  6. Stams AJM, Oude Elferink SJWH, Westermann P (2003) Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. Adv Biochem Eng Biotechnol 81:31–56

    Google Scholar 

  7. Fotidis IA, Karakashev D, Angelidaki I (2014) The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. Int J Environ Sci Technol 11(7):2087–2094

    Article  CAS  Google Scholar 

  8. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–280

    Google Scholar 

  9. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577

    Article  CAS  Google Scholar 

  10. McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20(6):623–632

    Article  CAS  Google Scholar 

  11. Worm P, Koehorst JJ, Visser M, Sedano-Núñez VT, Schaap PJ, Plugge CM, Sousa DZ, Stams AJM (2014) A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities. Biochim Biophys Acta—Bioenerg 1837(12):2004–2016

    Article  CAS  Google Scholar 

  12. Solli L, Håvelsrud OE, Horn SJ, Rike AG (2014) A metagenomic study of the microbial communities in four parallel biogas reactors. Biotechnol Biofuels 7(1):146

    Article  CAS  Google Scholar 

  13. Kazda M, Langer S, Bengelsdorf FR (2014) Fungi open new possibilities for anaerobic fermentation of organic residues. Energy Sustain Soc 4(1):6

    Article  Google Scholar 

  14. Koeck DE, Wibberg D, Maus I, Winkler A, Albersmeier A, Zverlov VV, Liebl W, Pühler A, Schwarz WH, Schlüter A (2014) Complete genome sequence of the cellulolytic thermophile Ruminoclostridium cellulosi wild-type strain {DG}5 isolated from a thermophilic biogas plant. J Biotechnol 188:136–137

    Article  CAS  Google Scholar 

  15. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90(1):1–17

    Article  CAS  Google Scholar 

  16. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860

    Article  CAS  Google Scholar 

  17. Nikolausz M, Walter RFH, Sträuber H, Liebetrau J, Schmidt T, Kleinsteuber S, Bratfisch F, Günther U, Richnow HH (2013) Evaluation of stable isotope fingerprinting techniques for the assessment of the predominant methanogenic pathways in anaerobic digesters. Appl Microbiol Biotechnol 97(5):2251–2262

    Article  CAS  Google Scholar 

  18. Lv Z, Hu M, Harms H, Richnow HH, Liebetrau J, Nikolausz M (2014) Stable isotope composition of biogas allows early warning of complete process failure as a result of ammonia inhibition in anaerobic digesters. Bioresour Technol 167:251–259

    Article  CAS  Google Scholar 

  19. Polag D, Krapf LC, Heuwinkel H, Laukenmann S, Lelieveld J, Keppler F (2014) Stable carbon isotopes of methane for real-time process monitoring in anaerobic digesters. Eng Life Sci 14(2):153–160

    Google Scholar 

  20. Van Soest PJ, McQueen RW (1973) The chemistry and estimation of fibre. Proc Nutr Soc 32(3):123–130

    Article  Google Scholar 

  21. Krapf LC, Heuwinkel H, Schmidhalter U, Gronauer A (2013) The potential for online monitoring of short-term process dynamics in anaerobic digestion using near-infrared spectroscopy. Biomass Bioenergy 48:224–230

    Article  CAS  Google Scholar 

  22. da Silva TL, Roseiro JC, Reis A (2012) Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes. Trends Biotechnol 30(4):225–232

    Article  CAS  Google Scholar 

  23. Rosselló-Móra R (2012) Towards a taxonomy of Bacteria and Archaea based on interactive and cumulative data repositories. Environ Microbiol 14:318–334

    Article  CAS  Google Scholar 

  24. Stantscheff R, Kuever J, Rabenstein A, Seyfarth K, Dröge S, König H (2014) Isolation and differentiation of methanogenic Archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium. Appl Microbiol Biotechnol 98(12):5719–5735

    Article  CAS  Google Scholar 

  25. Musat N, Foster R, Vagner T, Adam B, Kuypers MMM (2012) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36:486–511

    Article  CAS  Google Scholar 

  26. Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    Article  CAS  Google Scholar 

  27. Voß E, Weichgrebe D, Rosenwinkel KH (2009) FOS/TAC: Herleitung, Methodik, Anwendung und Aussagekraft. In: Proceedings of the international scientific conference biogas science 2009, vol 3, pp 675–682

    Google Scholar 

  28. Quist-Wessel PMF, Langeveld J (2014) Bioenergy production from waste agricultural biomass. In: Langeveld H, Dixon J, Van Keulen H (eds) Biofuel cropping systems carbon, land and food. Taylor and Francis, Hoboken

    Google Scholar 

  29. Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48(5–6):901–911

    Article  CAS  Google Scholar 

  30. Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32(1):5–12

    Article  CAS  Google Scholar 

  31. Munk B, Bauer C, Gronauer A, Lebuhn M (2011) A metabolic quotient for methanogenic Archaea. Water Sci Technol 66(11):2311–2317

    Article  CAS  Google Scholar 

  32. Munk B, Bauer C, Gronauer A, Lebuhn M (2010) Population dynamics of methanogens during acidification of biogas fermenters fed with maize silage. Eng Life Sci 10(6):496–508

    Article  CAS  Google Scholar 

  33. Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35(3):992–998

    Article  CAS  Google Scholar 

  34. Vintiloiu A, Lemmer A, Oechsner H, Jungbluth T (2012) Mineral substances and macronutrients in the anaerobic conversion of biomass: an impact evaluation. Eng Life Sci 12(3):287–294

    Article  CAS  Google Scholar 

  35. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    Article  CAS  Google Scholar 

  36. Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10(6):1383–1398

    Article  CAS  Google Scholar 

  37. Hecht C, Griehl C (2009) Investigation of the accumulation of aromatic compounds during biogas production from kitchen waste. Bioresour Technol 100(2):654–658

    Article  CAS  Google Scholar 

  38. Sayder B, Vitz H, Mohring S, Merrettig-Bruns U, Kabasci S, Hamscher G, Tuerk J (2009) Gehemmte Biologie. Biogas-J 12(2):44–45

    Google Scholar 

  39. Young JC (2004) Respirometry for environmental science and engineering. SJ Enterprises, Springdale, Arkansas

    Google Scholar 

  40. Noike T, Endo G, Chang JE, Yaguchi J, Matsumoto J (1985) Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng 27(10):1482–1489

    Article  CAS  Google Scholar 

  41. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol Biol Rev 66,(3):506–577

    Google Scholar 

  42. Merlin Christy P, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev 34(C):167–173

    Google Scholar 

  43. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4

    Article  CAS  Google Scholar 

  44. Zhang Y-HP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6(3):1510–1515

    Article  CAS  Google Scholar 

  45. Schwald W, Chart M, Breuil C, Saddler JN (1988) Applied microbiology biotechnology comparison of HPLC and colorimetric methods for measuring cellulolytic activity, pp 398–403

    Google Scholar 

  46. Khan AW, Tremblay D, LeDuy A (1986) Assay of xylanase and xylosidase activities in bacterial and fungal cultures. Enzyme Microb Technol 8(6):373–377

    Article  CAS  Google Scholar 

  47. Obst U (1985) Test instructions for measuring the microbial metabolic activity in water samples. Fresenius’ Zeitschrift fuer Anal Chemie 321(2):166–168

    Article  CAS  Google Scholar 

  48. Gasch C, Hildebrandt I, Rebbe F, Röske I (2013) Enzymatic monitoring and control of a two-phase batch digester leaching system with integrated anaerobic filter. Energy Sustain Soc 3(1):10

    Article  Google Scholar 

  49. Mshandete AM, Björnsson L, Kivaisi AK, Steven M, Rubindamayugi T, Mattiasson B (2008) Two-stage anaerobic digestion of aerobic pre-treated sisal leaf decortications residues: hydrolases activities and biogas production profile. Afr J Biochem Res 2(5):211–218

    Google Scholar 

  50. Holzapfel-Pschorn A, Obst U, Haberer K (1987) Sensitive methods for the determination of microbial activities in water samples using fluorigenic substrates. Fresenius’ Zeitschrift fuer Anal Chemie 327(5–6):521–523

    Article  CAS  Google Scholar 

  51. Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJM, Lema JM, Carballa M (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167(10):581–589

    Article  CAS  Google Scholar 

  52. Parawira W (2012) Enzyme research and applications in biotechnological intensification of biogas production. Crit Rev Biotechnol 32:172–186

    Google Scholar 

  53. Ahuja SK, Ferreira GM, Moreira AR (2004) Utilization of enzymes for environmental applications. Crit Rev Biotechnol 24(2–3):125–154

    Article  CAS  Google Scholar 

  54. Warthmann R, Baier U, Meier U, Hersener J (2013) Optimisation of anaerobic digestion by pre-treatment, additives and process engineering. In: Biogas process optimisation workshop, 2013

    Google Scholar 

  55. Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101(22):8713–8717

    Article  CAS  Google Scholar 

  56. Shen S, Nges IA, Yun J, Liu J (2014) Pre-treatments for enhanced biochemical methane potential of bamboo waste. Chem Eng J 240:253–259

    Article  CAS  Google Scholar 

  57. Yu S, Zhang G, Li J, Zhao Z, Kang X (2013) Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge. Bioresour Technol 146:758–761

    Article  CAS  Google Scholar 

  58. Diak J, Örmeci B, Kennedy KJ (2012) Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance. Bioprocess Biosyst Eng 35(9):1577–1589

    Article  CAS  Google Scholar 

  59. Plöchl M, Hilse A, Heiermann M, Suarez Quinones T, Budde J, Prochnow A (2009) Application of hydrolytic enzymes for improving biogas feedstock fluidity. CIGR E J IX:1–16

    Google Scholar 

  60. Burgess J, Pletschke B (2008) Hydrolytic enzymes in sewage sludge treatment: a mini-review. Water Sa 34(3):343–350

    CAS  Google Scholar 

  61. Davidsson Å, Wawrzynczyk O Norrlöw, Jansen J la C (2007) Strategies for enzyme dosing to enhance anaerobic digestion of sewage sludge. J Residuals Sci Technol 4(1):1–7

    Google Scholar 

  62. Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour Technol 56(2–3):229–237

    Article  CAS  Google Scholar 

  63. Gokhale A, Lu J, Lee I (2013) Immobilization of cellulase on magnetoresponsive graphene nano-supports. J Mol Catal B Enzym 90:76–86

    Google Scholar 

  64. Weiss S, Lebuhn M, Andrade D, Zankel A, Cardinale M, Birner-Gruenberger R, Somitsch W, Ueberbacher BJ, Guebitz GM (2013) Activated zeolite—Suitable carriers for microorganisms in anaerobic digestion processes? Appl Microbiol Biotechnol 97(7):3225–3238

    Article  CAS  Google Scholar 

  65. Montalvo S, Guerrero L, Borja R, Sánchez E, Milán Z, Cortés I, Angeles de la la Rubia M (2012) Application of natural zeolites in anaerobic digestion processes: a review. Appl Clay Sci 58:125–133

    Google Scholar 

  66. Jeganathan J, Nakhla G, Bassi A (2007) Hydrolytic pretreatment of oily wastewater by immobilized lipase. J Hazard Mater 145(1–2):127–135

    Article  CAS  Google Scholar 

  67. Kavitha S, Adish Kumar S, Yogalakshmi KN, Kaliappan S, Rajesh Banu J (2013) Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA. Bioresour Technol 150:210–219

    Google Scholar 

  68. Wang W, Yan L, Cui Z, Gao Y, Wang Y, Jing R (2011) Characterization of a microbial consortium capable of degrading lignocellulose. Bioresour Technol 102(19):9321–9324

    Article  CAS  Google Scholar 

  69. Yan L, Gao Y, Wang Y, Liu Q, Sun Z, Fu B, Wen X, Cui Z, Wang W (2012) Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresour Technol 111:49–54

    Article  CAS  Google Scholar 

  70. Weiss S, Tauber M, Somitsch W, Meincke R, Müller H, Berg G, Guebitz GM (2010) Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite. Water Res 44(6):1970–1980

    Article  CAS  Google Scholar 

  71. Kovács KL, Ács N, Kovács E, Wirth R, Rákhely G, Strang O, Herbel Z, Bagi Z (2013) Improvement of biogas production by bioaugmentation. Biomed Res Int 2013:482653

    Article  CAS  Google Scholar 

  72. Bagi Z, Acs N, Bálint B, Horváth L, Dobó K, Perei KR, Rákhely G, Kovács KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76(2):473–482

    Article  CAS  Google Scholar 

  73. Peng X, Börner RA, Nges IA, Liu J (2014) Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum. Bioresour Technol 152:567–571

    Article  CAS  Google Scholar 

  74. Levine SE, Fox JM, Blanch HW, Clark DS (2010) A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 107(1):37–51

    Article  CAS  Google Scholar 

  75. Christ O, Wilderer PA, Angerhöfer R, Faulstich M (2000) Mathematical modeling of the hydrolysis of anaerobic processes. Water Sci Technol 41(3):61–65

    CAS  Google Scholar 

  76. Rajendran K, Kankanala HR, Lundin M, Taherzadeh MJ (2014) A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresour Technol 168:7–13

    Article  CAS  Google Scholar 

  77. Koch K, Lübken M, Gehring T, Wichern M, Horn H (2010) Biogas from grass silage—Measurements and modeling with ADM1. Bioresour Technol 101(21):8158–8165

    Article  CAS  Google Scholar 

  78. Ramirez I, Mottet A, Carrère H, Déléris S, Vedrenne F, Steyer J-P (2009) Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Water Res 43(14):3479–3492

    Article  CAS  Google Scholar 

  79. Batstone D (2001) The IWA anaerobic digestion model no 1, vol 1, no. 1, pp 1–68

    Google Scholar 

  80. Narihiro T, Kamagata Y (2013) Cultivating Yet-to-be Cultivated Microbes: The Challenge Continues. Microbes Environ 28(2):163–165

    Article  Google Scholar 

  81. Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3(2):0003.1–0003.8

    Google Scholar 

  82. Westerholm M, Levén L, Schnürer A (2012) Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl Environ Microbiol 78(21):7619–7625

    Article  CAS  Google Scholar 

  83. Munk B, Lebuhn M (2014) Process diagnosis using methanogenic Archaea in maize-fed, trace element depleted fermenters. Anaerobe 29:22–28

    Article  CAS  Google Scholar 

  84. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  Google Scholar 

  85. Fontaine M, Guillot E (2003) Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts. FEMS Microbiol Lett 226(2):237–243

    Article  CAS  Google Scholar 

  86. Keer JT, Birch L (2003) Molecular methods for the assessment of bacterial viability. J Microbiol Methods 53(2):175–183

    Article  CAS  Google Scholar 

  87. Lebuhn M, Effenberger M, Gronauer A, Wilderer PA, Wuertz S (2003) Using quantitative real-time PCR to determine the hygienic status of cattle manure. Water Sci Technol 48(4):97–103

    CAS  Google Scholar 

  88. Garcés G (2005) Quantitative real-time PCR for detecting Cryptosporidium parvum in cattle manure and anaerobic digester samples—Methodological advances in {DNA} extraction. In: Proceedings of the 8th Latin American workshop and symposium on anaerobic digestion, pp 68–73

    Google Scholar 

  89. Garcés-Sanchez G, Wilderer PA, Munch JC, Horn H, Lebuhn M (2009) Evaluation of two methods for quantification of hsp70 mRNA from the waterborne pathogen Cryptosporidium parvum by reverse transcription real-time PCR in environmental samples. Water Res 43(10):2669–2678

    Article  CAS  Google Scholar 

  90. Schmedes S, Marshall P, King JL, Budowle B (2013) Effective removal of co-purified inhibitors from extracted DNA samples using synchronous coefficient of drag alteration (SCODA) technology. Int J Legal Med 127(4):749–755

    Article  Google Scholar 

  91. Lebuhn M, Effenberger M, Garcés G, Gronauer A, Wilderer PA (2004) Evaluating real-time PCR for the quantification of distinct pathogens and indicator organisms in environmental samples. Water Sci Technol 50(1):263–270

    CAS  Google Scholar 

  92. Dorak MT (ed) (2007) Real-time PCR, 1st edn. Taylor & Francis, New York

    Google Scholar 

  93. Lech M, Anders H-J (2014) Expression profiling by real-time quantitative polymerase chain reaction (RT-qPCR). Methods Mol Biol 1169:133–142

    Article  CAS  Google Scholar 

  94. Kim J, Lim J, Lee C (2013) Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: Applications and considerations. Biotechnol Adv 31(8):1358–1373

    Article  CAS  Google Scholar 

  95. Navarro E, Serrano-Heras G, Castaño MJ, Solera J (2015) Real-time PCR detection chemistry. Clin Chim Acta 439:231–250

    Article  CAS  Google Scholar 

  96. Terpe K (2013) Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 97(24):10243–10254

    Article  CAS  Google Scholar 

  97. McInerney P, Adams P, Hadi MZ (2014) Error rate comparison during polymerase chain reaction by DNA Polymerase. Mol Biol Int 2014:8

    Article  CAS  Google Scholar 

  98. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ (2011) Human microbiome consortium. In: F. Petrosino J, Knight R, Birren BW (eds) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21(3):494–504

    Google Scholar 

  99. Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66(1):429–452

    Article  CAS  Google Scholar 

  100. Bauer C, Korthals M, Gronauer A, Lebuhn M (2008) Methanogens in biogas production from renewable resources—a novel molecular population analysis approach. Water Sci Technol 58(7):1433–1439

    Article  CAS  Google Scholar 

  101. Widmer G, Orbacz EA, Tzipori S (1999) beta-tubulin mRNA as a marker of Cryptosporidium parvum oocyst viability. Appl Environ Microbiol 65(4):1584–1588

    CAS  Google Scholar 

  102. McKillip JL, Jaykus LA, Drake M (1999) Nucleic acid persistence in heat-killed Escherichia coli O157:H7 from contaminated skim milk. J Food Prot 62(8):839–844

    CAS  Google Scholar 

  103. Ho DP, Jensen PD, Batstone DJ (2013) Methanosarcinaceae and acetate-oxidizing pathways dominate in high-rate thermophilic anaerobic digestion of waste-activated sludge. Appl Environ Microbiol 79(20):6491–6500

    Article  CAS  Google Scholar 

  104. Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, Klocke M (2010) Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 76(8):2540–2548

    Article  CAS  Google Scholar 

  105. Li J, Rui J, Pei Z, Sun X, Zhang S, Yan Z, Wang Y, Liu X, Zheng T, Li X (2014) Straw- and slurry-associated prokaryotic communities differ during co-fermentation of straw and swine manure. Appl Microbiol Biotechnol 98(10):4771–4780

    Article  CAS  Google Scholar 

  106. Steinberg LM, Regan JM (2011) Response of lab-scale methanogenic reactors inoculated from different sources to organic loading rate shocks. Bioresour Technol 102:8790–8798

    Article  CAS  Google Scholar 

  107. Zhang C, Yuan Q, Lu Y (2014) Inhibitory effects of ammonia on methanogen mcrA transcripts in anaerobic digester sludge. FEMS Microbiol Ecol 87(2):368–377

    Article  CAS  Google Scholar 

  108. Lv Z, Leite AF, Harms H, Richnow HH, Liebetrau J, Nikolausz M (2014) Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods. Anaerobe 29:91–99

    Article  CAS  Google Scholar 

  109. Freitag TE, Prosser JI (2009) Correlation of methane production and functional gene transcriptional activity in a peat soil. Appl Environ Microbiol 75(21):6679–6687

    Article  CAS  Google Scholar 

  110. Watanabe T, Kimura M, Asakawa S (2009) Distinct members of a stable methanogenic archaeal community transcribe mcrA genes under flooded and drained conditions in Japanese paddy field soil. Soil Biol Biochem 41(2):276–285

    Article  CAS  Google Scholar 

  111. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  Google Scholar 

  112. Talbot G, Topp E, Palin MF, Massé DI (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42(3):513–537

    Article  CAS  Google Scholar 

  113. Rolfs A, Schuller I, Finckh U, Weber-Rolfs I (1992) Detection of single base changes using PCR. In: Rolfs A, Schuller I, Finckh U, Weber-Rolfs I (eds) PCR: clinical diagnostics and research. Springer, Berlin, pp 149–167

    Chapter  Google Scholar 

  114. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    Article  CAS  Google Scholar 

  115. Frigon D, Oerthe DB, Morgenroth E, Raskin L (2002) Oligonucleotide probe hybridization and modeling results suggest that populations consuming readily degradable substrate have high cellular RNA levels. Water Sci Technol 45(6):115–126

    CAS  Google Scholar 

  116. Candrian U (1995) Polymerase chain reaction in food microbiology. J Microbiol Methods 23(1):89–103

    Article  CAS  Google Scholar 

  117. Roose-Amsaleg C, Garnier-Sillam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl. Soil Ecol 18(1):47–60

    Article  Google Scholar 

  118. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66(12):5488–5491

    Article  CAS  Google Scholar 

  119. Maukonen J, Mättö J, Wirtanen G, Raaska L, Mattila-Sandholm T, Saarela M (2003) Methodologies for the characterization of microbes in industrial environments: a review. J Ind Microbiol Biotechnol 30(6):327–356

    Article  CAS  Google Scholar 

  120. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  Google Scholar 

  121. Janssen P, Bleeker M, Kersters K (1996) Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy, pp 1881–1893

    Google Scholar 

  122. Sklarz MY, Angel R, Gillor O, Soares MIM (2009) Evaluating amplified rDNA restriction analysis assay for identification of bacterial communities. Antonie Van Leeuwenhoek 96(4):659–664

    Article  CAS  Google Scholar 

  123. Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65(10):4630–4636

    CAS  Google Scholar 

  124. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218

    Article  CAS  Google Scholar 

  125. Power EG (1996) RAPD typing in microbiology—a technical review. J Hosp Infect 34(4):247–265

    Article  CAS  Google Scholar 

  126. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5(25):25–40

    CAS  Google Scholar 

  127. Mills DK, Entry JA, Gillevet PM, Mathee K (2007) Assessing microbial community diversity using amplicon length heterogeneity polymerase chain reaction. Soil Sci Soc Am J 71(2):572

    Article  CAS  Google Scholar 

  128. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37(1):67–75

    Article  CAS  Google Scholar 

  129. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    CAS  Google Scholar 

  130. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54(2):276–289

    Article  CAS  Google Scholar 

  131. Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 80(6):1579–1583

    Article  CAS  Google Scholar 

  132. Muyzer G, Smalla K (1998) “Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoeck Int J Gen Mol Microbiol 73:127–141

    Article  CAS  Google Scholar 

  133. Rosenbaum V, Riesner D (1987) Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys Chem 26(2–3):235–246

    Article  CAS  Google Scholar 

  134. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86(8):2766–2770

    Article  CAS  Google Scholar 

  135. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64(12):4870–4876

    CAS  Google Scholar 

  136. Su C, Lei L, Duan Y, Zhang K-Q, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93(3):993–1003

    Article  CAS  Google Scholar 

  137. Wagner R (1994) The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol 161(2):100–109

    Article  CAS  Google Scholar 

  138. Wintzingerode FV, Göbel UB, Stackebrandt E (2006) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229

    Article  Google Scholar 

  139. García-Martínez J, Acinas SG, Antón AI, Rodríguez-Valera F (1999) Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Methods 36(1–2):55–64

    Article  Google Scholar 

  140. Gürtler V, Stanisich A (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142 (Pt 1):3–16

    Google Scholar 

  141. Schmid M, Schmitz-Esser S, Jetten M, Wagner M (2001) 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3(7):450–459

    Article  CAS  Google Scholar 

  142. Ziganshina EE, Bagmanova AR, Khilyas IV, Ziganshin AM (2014) Assessment of a biogas-generating microbial community in a pilot-scale anaerobic reactor. J Biosci Bioeng 117(6):730–736

    Article  CAS  Google Scholar 

  143. Mills DK, Fitzgerald K, Litchfield CD, Gillevet PM (2003) A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J Microbiol Methods 54(1):57–74

    Article  CAS  Google Scholar 

  144. Stahl DA, Capman WC (1994) Applications of molecular genetics to the study of microbial communities. NATO ASI Ser 35:193–206

    Google Scholar 

  145. Muyzer G (2000) Genetic fingerprinting of microbial communities—present status and future perspectives. In: Bell CR, Brylinski M, Johnson-Green P (eds) Microbial biosystems: new frontiers. proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, pp 503–572

    Google Scholar 

  146. Collins G, Woods A, McHugh S, Carton MW, O’Flaherty V (2003) Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiol Ecol 46(2):159–170

    Article  CAS  Google Scholar 

  147. Padmasiri SI, Zhang J, Fitch M, Norddahl B, Morgenroth E, Raskin L (2007) Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Res 41(1):134–144

    Article  CAS  Google Scholar 

  148. McHugh S, Collins G, O’Flaherty V (2006) Long-term, high-rate anaerobic biological treatment of whey wastewaters at psychrophilic temperatures. Bioresour Technol 97(14):1669–1678

    Article  CAS  Google Scholar 

  149. Scully C, Collins G, O’Flaherty V (2005) Assessment of anaerobic wastewater treatment failure using terminal restriction fragment length polymorphism analysis. J Appl Microbiol 99(6):1463–1471

    Article  CAS  Google Scholar 

  150. Liesack W, Dunfield PF (2002) Biodiversity in soils: use of molecular methods for its characterization. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 4516–4522

    Google Scholar 

  151. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  Google Scholar 

  152. Schmalenberger A, Tebbe CC (2014) Profiling the diversity of microbial communities with single-strand conformation polymorphism (SSCP). Methods Mol Biol 1096:71–83

    Article  CAS  Google Scholar 

  153. Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69(3):470–479

    Article  CAS  Google Scholar 

  154. Chachkhiani M, Dabert P, Abzianidze T, Partskhaladze G, Tsiklauri L, Dudauri T, Godon JJ (2004) 16S rDNA characterisation of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure. Bioresour Technol 93(3):227–232

    Article  CAS  Google Scholar 

  155. Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci USA 108(10):4158–4163

    Article  CAS  Google Scholar 

  156. Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43(1):1–11

    Article  CAS  Google Scholar 

  157. Yu D, Kurola JM, Kymäläinen M, Sinkkonen A, Romantschuk M (2014) Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. J Environ Manage 143:54–60

    Article  CAS  Google Scholar 

  158. De Vrieze J, Verstraete W, Boon N (2013) Repeated pulse feeding induces functional stability in anaerobic digestion. Microb Biotechnol 6(4):414–424

    Article  CAS  Google Scholar 

  159. Franke-Whittle IH, Goberna M, Pfister V, Insam H (2009) Design and development of the ANAEROCHIP microarray for investigation of methanogenic communities. J Microbiol Methods 79(3):279–288

    Article  CAS  Google Scholar 

  160. Franke-Whittle IH, Knapp BA, Fuchs J, Kaufmann R, Insam H (2009) Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb Ecol 57(3):510–521

    Article  CAS  Google Scholar 

  161. Goberna M, Gadermaier M, Schoen MA, Sperl D, Franke-Whittle IH, Wett B, Insam H (2012) Fingerprinting the microbial communities in organic wastes using oligonucleotide microarrays and Real-Time PCR. In: Trasar-Cepeda C, Hernandez T, Garcia C, Rad C, Gonzales-Carcedo S (eds) Soil enzymology in the recycling of organic wastes and environmental restoration, Burgos, Spain. Springer, Berlin, pp 285–298

    Google Scholar 

  162. Mutz K-O, Heilkenbrinker A, Lönne M, Walter J-G, Stahl F (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24(1):22–30

    Article  CAS  Google Scholar 

  163. Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2012) Application of metatranscriptomics to soil environments. J Microbiol Methods 91(2):246–251

    Article  CAS  Google Scholar 

  164. Solomon KV, Haitjema CH, Thompson DA, O’Malley MA (2014) Extracting data from the muck: deriving biological insight from complex microbial communities and non-model organisms with next generation sequencing. Curr Opin Biotechnol 28:103–110

    Article  CAS  Google Scholar 

  165. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom 13(1):341

    Article  CAS  Google Scholar 

  166. Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C (2013) Computational meta’omics for microbial community studies. Mol. Syst. Biol. 9(1):666

    Article  Google Scholar 

  167. Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120

    Article  CAS  Google Scholar 

  168. Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS ONE 7(8):e43093

    Article  CAS  Google Scholar 

  169. Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Pérez CM (2014) Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe 29:10–21

    Article  CAS  Google Scholar 

  170. Zakrzewski M, Goesmann A, Jaenicke S, Jünemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sørensen S, Pühler A, Schlüter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158(4):248–258

    Article  CAS  Google Scholar 

  171. Wagner M, Assmus B, Hartmann A, Hutzler P, Amann R (1994) In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy. J Microsc 176(3):181–187

    Article  CAS  Google Scholar 

  172. Ploem JS (1967) The use of a vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incident light. Z Wiss Mikrosk 68:129–142

    CAS  Google Scholar 

  173. Caldwell DE, Korber DR, Lawrence JR (1992) Confocal laser microscopy and digital image analysis in microbial ecology. Adv Microb Ecol 12:1–67

    Article  CAS  Google Scholar 

  174. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173(20):6558–6567

    CAS  Google Scholar 

  175. Taylor DL, Salmon ED (1989) Basic fluorescence microscopy. In: Wang Y-L, Taylor DL (eds) Fluorescence microscopy of living cells in culture. Academic Press, San Diego, pp 207–237

    Google Scholar 

  176. Behnam F, Vilcinskas A, Wagner M, Stoecker K (2012) A straightforward DOPE (double labeling of oligonucleotide probes)-FISH (fluorescence in situ hybridization) method for simultaneous multicolor detection of six microbial populations. Appl Environ Microbiol 78(15):5138–5142

    Article  CAS  Google Scholar 

  177. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6(5):339–348

    Article  CAS  Google Scholar 

  178. Amann R, Kühl M (1998) In situ methods for assessment of microorganisms and their activities. Curr Opin Microbiol 1:352–358

    Article  CAS  Google Scholar 

  179. Raskin L, Poulsen LK, Noguera DR, Rittmann BE, Stahl DA (1994) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60(4):1241–1248

    CAS  Google Scholar 

  180. Loy A, Horn M, Wagner M (2003) probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res 31(1):514–516

    Article  CAS  Google Scholar 

  181. Kepner RL, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58(4):603–615

    CAS  Google Scholar 

  182. Sanz JL, Köchling T (2007) Molecular biology techniques used in wastewater treatment: An overview. Process Biochem 42(2):119–133

    Article  CAS  Google Scholar 

  183. Diaper JP, Tither K, Edwards C (1992) Rapid assessment of bacterial viability by flow cytometry. Appl Microbiol Biotechnol 38(2)

    Google Scholar 

  184. Crosland-Taylor PJ (1953) A device for counting small particles suspended in a fluid through a Tube. Nature 171:37–38

    Article  CAS  Google Scholar 

  185. Koch C, Harnisch F, Schröder U, Müller S (2014) Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics. Front Microbiol 5:273

    Article  Google Scholar 

  186. Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H (2009) Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS-Matrix. Water Res 43(1):63–76

    Article  CAS  Google Scholar 

  187. Hoff K (1988) Rapid and simple method for double staining of bacteria with 4′,6-diamino-2-phenylindole and fluorescein isothiocyanate labelled antibodies. Appl Environ Microbiol 54(12):2949–2952

    Google Scholar 

  188. Lukinavičius G, Reymond L, D’Este E, Masharina A, Göttfert F, Ta H, Güther A, Fournier M, Rizzo S, Waldmann H, Blaukopf C, Sommer C, Gerlich DW, Arndt H-D, Hell SW, Johnsson K (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11(7):731–733

    Article  CAS  Google Scholar 

  189. Grimm JB, Sung AJ, Legant WR, Hulamm P, Matlosz SM, Betzig E, Lavis LD (2013) Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes. ACS Chem Biol 8(6):1303–1310

    Article  CAS  Google Scholar 

  190. Hunter RC, Beveridge TJ (2005) Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71(5):2501–2510

    Article  CAS  Google Scholar 

  191. Zebulun O (2013) Molecular and biological techniques used in landfill investigations: A mini-review. Biotechnol Mol Biol Rev 8(2):35–42

    Article  CAS  Google Scholar 

  192. Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65(3):1289–1297

    CAS  Google Scholar 

  193. Nielsen JL, Nielsen PH (2010) Combined microautoradiography and fluorescence in situ hybridization (MAR-FISH) for the identification of metabolically active microorganisms. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 4093–4102

    Google Scholar 

  194. Collins G, Kavanagh S, McHugh S, Connaughton S, Kearney A, Rice O, Carrigg C, Scully C, Bhreathnach N, Mahony T, Madden P, Enright A-M, O’flaherty V (2006) Accessing the black box of microbial diversity and ecophysiology: recent advances through polyphasic experiments. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(5):897–922

    Google Scholar 

  195. Okabe S, Kindaichi T, Ito T (2004) MAR-FISH—An ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microbes Environ 19(2):83–98

    Article  Google Scholar 

  196. Ariesyady HD, Ito T, Yoshiguchi K, Okabe S (2007) Phylogenetic and functional diversity of propionate-oxidizing bacteria in an anaerobic digester sludge. Appl Microbiol Biotechnol 75(3):673–683

    Article  CAS  Google Scholar 

  197. Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41(7):1554–1568

    Article  CAS  Google Scholar 

  198. Ito T, Yoshiguchi K, Ariesyady HD, Okabe S (2011) Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge. ISME J 5(12):1844–1856

    Article  CAS  Google Scholar 

  199. Ito T, Yoshiguchi K, Ariesyady HD, Okabe S (2012) Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge. Bioresour Technol 123:599–607

    Article  CAS  Google Scholar 

  200. Song H, Clarke WP, Blackall LL (2005) Concurrent microscopic observations and activity measurements of cellulose hydrolyzing and methanogenic populations during the batch anaerobic digestion of crystalline cellulose. Biotechnol Bioeng 91(3):369–378

    Article  CAS  Google Scholar 

  201. Fernández N, Montalvo S, Fernández-Polanco F, Guerrero L, Cortés I, Borja R, Sánchez E, Travieso L (2007) Real evidence about zeolite as microorganisms immobilizer in anaerobic fluidized bed reactors. Process Biochem 42:721–728

    Article  CAS  Google Scholar 

  202. Weiss S, Zankel A, Lebuhn M, Petrak S, Somitsch W, Guebitz GM (2011) Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage. Bioresour Technol 102(6):4353–4359

    Article  CAS  Google Scholar 

  203. Krakat N, Westphal A, Schmidt S, Scherer P (2010) Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol 76(6):1842–1850

    Article  CAS  Google Scholar 

  204. Cresson R, Dabert P, Bernet N (2009) Microbiology and performance of a methanogenic biofilm reactor during the start-up period. J Appl Microbiol 106(3):863–876

    Article  CAS  Google Scholar 

  205. Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71(1):331–338

    Article  CAS  Google Scholar 

  206. Crocetti G, Murto M, Björnsson L (2006) An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). J Microbiol Methods 65:194–201

    Article  CAS  Google Scholar 

  207. Hoshino T, Yilmaz LS, Noguera DR, Daims H, Wagner M (2008) Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Appl Environ Microbiol 74(16):5068–5077

    Article  CAS  Google Scholar 

  208. Stoecker K, Dorninger C, Daims H, Wagner M (2010) Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol 76(3):922–926

    Article  CAS  Google Scholar 

  209. Kumar RK, Chapple CC, Hunter N (1999) Improved double immunofluorescence for confocal laser scanning microscopy. J Histochem Cytochem 47:1213–1218

    Article  CAS  Google Scholar 

  210. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Förster WI, Brettske S, Gerber A, Ginhart W, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371

    Google Scholar 

  211. Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7(1):408–415

    Article  CAS  Google Scholar 

  212. Rotaru A-E, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin K, Lovley D (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80(24):AEM.00895

    Google Scholar 

  213. Dubé CD, Guiot SR (2014) Direct interspecies electron transfer in granular sludge. In: International conference biogas science 2014, pp 85–86

    Google Scholar 

  214. Teng Z, Hua J, Wang C, Lu X (2014) Design and optimization principles of biogas reactors in large scale applications: research progress in lab—Immobilization. In: Shi F (ed) Reactor and process design in sustainable energy technology. Springer, Amsterdam, pp 125–127

    Google Scholar 

  215. Lalov IG, a. Krysteva M, Phelouzat JL (2001) Improvement of biogas production from vinasse via covalently immobilized methanogens. Bioresour Technol 79:83–85

    Google Scholar 

  216. Gong W, Liang H, Li W, Wang Z (2011) Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure. Energy 36(5):3572–3578

    Article  CAS  Google Scholar 

  217. Ahammad SZ, Davenport RJ, Read LF, Gomes J, Sreekrishnan TR, Dolfing J (2013) Rational immobilization of methanogens in high cell density bioreactors. RSC Adv 3:774

    Article  CAS  Google Scholar 

  218. Bauer A, Theuretzbacher F, Rincón M, Enguidanos R (2014) Steam explosion pretreatment production of Alpine hay for enhancing biogas. In: Proceedings international conference of agricultural engineering, 2014, pp 4–7

    Google Scholar 

  219. Bharathiraja B, Sudharsanaa T, Bharghavi A, Sowmeya GS, Balaram G (2014) Insights on lignocellulosic pretreatments for biofuel production- SEM and reduction of lignin analysis, vol 6, no 9

    Google Scholar 

  220. Serrano-Lotina A, Daza L (2013) Highly stable and active catalyst for hydrogen production from biogas. J Power Sources 238:81–86

    Article  CAS  Google Scholar 

  221. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28(12):2959–2964

    Article  CAS  Google Scholar 

  222. Ishitani T, Yaguchi T (1996) Cross-sectional sample preparation by focused ion beam: a review of ion-sample interaction. Microsc Res Tech 35(4):320–333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lebuhn, M., Weiß, S., Munk, B., Guebitz, G.M. (2015). Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. In: Guebitz, G., Bauer, A., Bochmann, G., Gronauer, A., Weiss, S. (eds) Biogas Science and Technology. Advances in Biochemical Engineering/Biotechnology, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-21993-6_1

Download citation

Publish with us

Policies and ethics