Skip to main content

Cosmic Reionization and the First Nonlinear Structures in the Universe

  • Chapter
Understanding the Epoch of Cosmic Reionization

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 423))

Abstract

In this Introduction, we outline expectations for when and how the hydrogen and helium atoms in the universe turned from neutral to ionized, focusing on the earliest, least well understood stages, and emphasize the most important open questions. We include a historical summary, and highlight the role of reionization as one of the few milestones in the evolution of the universe since the Big Bang, and its status as a unique probe of the beginning stages of structure formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    P.A.R. Ade et al. (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, A&A, submitted, e-print arXiv:1502.01589.

  2. 2.

    This topic was recently revisited [55] in a more rigorous analysis, following the time-dependent, non-equilibrium H2 population levels. This yielded the same conclusion, i.e. that the post-recombination “intergalactic” H2 abundance is negligibly low.

  3. 3.

    As an amusing aside: the highest redshift in our Hubble volume where we may find a star in a collapsed minihalo is z = 65, corresponding to an \(\approx 8\sigma\) fluctuation on the mass scale 105 M [69].

  4. 4.

    For reference, the largest existing N-body simulation is the Millennium-XXL project with 3 × 1011 particles.

  5. 5.

    Reionization must end by \(z \sim 6\), as shown recently using the fraction of dark Lyα and Lyβ pixels in a sample of 22 quasars [139].

References

  1. M. Schmidt. Large Redshifts of Five Quasi-Stellar Sources. ApJ, 141:1295, April 1965.

    Article  ADS  Google Scholar 

  2. J. E. Gunn and B. A. Peterson. On the Density of Neutral Hydrogen in Intergalactic Space. ApJ, 142:1633–1641, November 1965.

    Article  ADS  Google Scholar 

  3. A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna Temperature at 4080 Mc/s. ApJ, 142:419–421, July 1965.

    Article  ADS  Google Scholar 

  4. R. A. Sunyaev and I. B. Zeldovich. Microwave background radiation as a probe of the contemporary structure and history of the universe. ARAA, 18:537–560, 1980.

    Article  ADS  Google Scholar 

  5. C. J. Hogan, N. Kaiser, and M. J. Rees. Interpretation of anisotropy in the cosmic background radiation. Royal Society of London Philosophical Transactions Series A, 307:97–109, October 1982.

    Article  ADS  Google Scholar 

  6. L. Hernquist, N. Katz, D. H. Weinberg, and J. Miralda-Escudé. The Lyman-Alpha Forest in the Cold Dark Matter Model. ApJ, 457:L51, February 1996.

    Article  ADS  Google Scholar 

  7. F. Haardt and P. Madau. Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background. ApJ, 461:20, April 1996.

    Google Scholar 

  8. Z. Haiman and L. Knox. Reionization of the Intergalactic Medium and its Effect on the CMB. In A. de Oliveira-Costa and M. Tegmark, editors, Microwave Foregrounds, volume 181 of Astronomical Society of the Pacific Conference Series, page 227, 1999.

    Google Scholar 

  9. W. Hu and S. Dodelson. Cosmic Microwave Background Anisotropies. ARAA, 40:171–216, 2002.

    Article  ADS  Google Scholar 

  10. M. Zaldarriaga, L. Colombo, E. Komatsu, A. Lidz, M. Mortonson, S. P. Oh, E. Pierpaoli, L. Verde, and O. Zahn. CMBPol Mission Concept Study: Reionization Science with the Cosmic Microwave Background. CMBPol White Paper, e-print arXiv:0811.3918, November 2008.

    Google Scholar 

  11. W. Hu and M. White. The Damping Tail of Cosmic Microwave Background Anisotropies. ApJ, 479:568–579, April 1997.

    Article  ADS  Google Scholar 

  12. C. J. Hogan, N. Kaiser, and M. J. Rees. Interpretation of anisotropy in the cosmic background radiation. Royal Society of London Philosophical Transactions Series A, 307:97–109, October 1982.

    Article  ADS  Google Scholar 

  13. M. Zaldarriaga, D. N. Spergel, and U. Seljak. Microwave Background Constraints on Cosmological Parameters. ApJ, 488:1–13, October 1997.

    Article  ADS  Google Scholar 

  14. M. Kaplinghat, M. Chu, Z. Haiman, G. P. Holder, L. Knox, and C. Skordis. Probing the Reionization History of the Universe using the Cosmic Microwave Background Polarization. ApJ, 583:24–32, January 2003.

    Article  ADS  Google Scholar 

  15. M. J. Mortonson and W. Hu. Model-Independent Constraints on Reionization from Large-Scale Cosmic Microwave Background Polarization. ApJ, 672:737–751, January 2008.

    Article  ADS  Google Scholar 

  16. A. Gruzinov and W. Hu. Secondary Cosmic Microwave Background Anisotropies in a Universe Reionized in Patches. ApJ, 508:435–439, December 1998.

    Article  ADS  Google Scholar 

  17. L. Knox, R. Scoccimarro, and S. Dodelson. Impact of Inhomogeneous Reionization on Cosmic Microwave Background Anisotropy. Physical Review Letters, 81:2004–2007, September 1998.

    Article  ADS  Google Scholar 

  18. M. G. Santos, A. Cooray, Z. Haiman, L. Knox, and C.-P. Ma. Small-Scale Cosmic Microwave Background Temperature and Polarization Anisotropies Due to Patchy Reionization. ApJ, 598:756–766, December 2003.

    Article  ADS  Google Scholar 

  19. A. Mesinger, M. McQ uinn, and D. N. Spergel. The kinetic Sunyaev-Zel’dovich signal from inhomogeneous reionization: a parameter space study. MNRAS, 422:1403–1417, May 2012.

    Google Scholar 

  20. Z. Haiman and G. L. Bryan. Was Star Formation Suppressed in High-Redshift Minihalos? ApJ, 650:7–11, October 2006.

    Article  ADS  Google Scholar 

  21. E. Visbal, Z. Haiman and G. L. Bryan. Limits on Population III star formation in minihaloes implied by Planck. MNRAS, 453:4456–4466, November 2015.

    Article  ADS  Google Scholar 

  22. G. B. Field. Absorption by Intergalactic Hydrogen. ApJ, 135:684–693, May 1962.

    Article  ADS  Google Scholar 

  23. C. J. Hogan and M. J. Rees. Spectral appearance of non-uniform gas at high Z. MNRAS, 188:791–798, September 1979.

    Article  ADS  Google Scholar 

  24. K. Subramanian and T. Padmanabhan. Neutral Hydrogen at High Redshifts as a Probe of Structure Formation - Part One - Post-Cobe Analysis of CDM and HDM Models. MNRAS, 265:101, November 1993.

    Article  ADS  Google Scholar 

  25. P. Madau, A. Meiksin, and M. J. Rees. 21 Centimeter Tomography of the Intergalactic Medium at High Redshift. ApJ, 475:429–444, February 1997.

    Article  ADS  Google Scholar 

  26. P. Tozzi, P. Madau, A. Meiksin, and M. J. Rees. Radio Signatures of H I at High Redshift: Mapping the End of the “Dark Ages”. ApJ, 528:597–606, January 2000.

    Article  ADS  Google Scholar 

  27. S. R. Furlanetto, S. P. Oh, and F. H. Briggs. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Physics Reports, 433:181–301, October 2006.

    Article  ADS  Google Scholar 

  28. J. Miralda-Escudé. Reionization of the Intergalactic Medium and the Damping Wing of the Gunn-Peterson Trough. ApJ, 501:15–22, July 1998.

    Article  ADS  Google Scholar 

  29. P. R. Shapiro and M. L. Giroux. Cosmological H II regions and the photoionization of the intergalactic medium. ApJ, 321:L107–L112, October 1987.

    Article  ADS  Google Scholar 

  30. R. Cen and Z. Haiman. Quasar Strömgren Spheres Before Cosmological Reionization. ApJ, 542:L75–L78, October 2000.

    Article  ADS  Google Scholar 

  31. Z. Haiman and A. Loeb. Determining the Redshift of Reionization from the Spectra of High-Redshift Sources. ApJ, 519:479–485, July 1999.

    Article  ADS  Google Scholar 

  32. J. Miralda-Escudé, M. Haehnelt, and M. J. Rees. Reionization of the Inhomogeneous Universe. ApJ, 530:1–16, February 2000.

    Article  ADS  Google Scholar 

  33. A. Mesinger and Z. Haiman. Evidence of a Cosmological Strömgren Surface and of Significant Neutral Hydrogen Surrounding the Quasar SDSS J1030+0524. ApJ, 611:L69–L72, August 2004.

    Article  ADS  Google Scholar 

  34. R. H. Becker, X. Fan, R. L. White, M. A. Strauss, V. K. Narayanan, R. H. Lupton, J. E. Gunn, J. Annis, N. A. Bahcall, J. Brinkmann, A. J. Connolly, I. Csabai, P. C. Czarapata, M. Doi, T. M. Heckman, G. S. Hennessy, Ž. Ivezić, G. R. Knapp, D. Q. Lamb, T. A. McKay, J. A. Munn, T. Nash, R. Nichol, J. R. Pier, G. T. Richards, D. P. Schneider, C. Stoughton, A. S. Szalay, A. R. Thakar, and D. G. York. Evidence for Reionization at z˜6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar. AJ, 122:2850–2857, December 2001.

    Google Scholar 

  35. R. Barkana. Did the universe reionize at redshift six? Nature, 7:85–100, March 2002.

    Google Scholar 

  36. R. B. Partridge and P. J. E. Peebles. Are Young Galaxies Visible? ApJ, 147:868, March 1967.

    Article  ADS  Google Scholar 

  37. E. M. Hu, L. L. Cowie, and R. G. McMahon. The Density of Lyα Emitters at Very High Redshift. ApJ, 502:L99–L103, August 1998.

    Article  ADS  Google Scholar 

  38. Z. Haiman and M. Spaans. Models for Dusty Lyα Emitters at High Redshift. ApJ, 518:138–144, June 1999.

    Article  ADS  Google Scholar 

  39. M. Ouchi, K. Shimasaku, H. Furusawa, T. Saito, M. Yoshida, M. Akiyama, Y. Ono, T. Yamada, K. Ota, N. Kashikawa, M. Iye, T. Kodama, S. Okamura, C. Simpson, and M. Yoshida. Statistics of 207 Lyα Emitters at a Redshift Near 7: Constraints on Reionization and Galaxy Formation Models. ApJ, 723:869–894, November 2010.

    Article  ADS  Google Scholar 

  40. Z. Haiman. The Detectability of High-Redshift Lyα Emission Lines prior to the Reionization of the Universe. ApJ, 576:L1–L4, September 2002.

    Article  ADS  MathSciNet  Google Scholar 

  41. M. R. Santos. Probing reionization with Lyman α emission lines. MNRAS, 349:1137–1152, April 2004.

    Article  ADS  Google Scholar 

  42. M. Dijkstra, A. Lidz, and J. S. B. Wyithe. The impact of The IGM on high-redshift Lyα emission lines. MNRAS, 377:1175–1186, May 2007.

    Article  ADS  Google Scholar 

  43. M. Dijkstra, J. S. B. Wyithe, and Z. Haiman. Luminosity functions of Lyα emitting galaxies and cosmic reionization of hydrogen. MNRAS, 379:253–259, July 2007.

    Article  ADS  Google Scholar 

  44. M. Kuhlen and C.-A. Faucher-Giguère. Concordance models of reionization: implications for faint galaxies and escape fraction evolution. MNRAS, 423:862–876, June 2012.

    Article  ADS  Google Scholar 

  45. M. Dijkstra, Z. Haiman, and A. Loeb. A Limit from the X-Ray Background on the Contribution of Quasars to Reionization. ApJ, 613:646–654, October 2004.

    Article  ADS  Google Scholar 

  46. R. Salvaterra, F. Haardt, and A. Ferrara. Cosmic backgrounds from miniquasars. MNRAS, 362:L50–L54, September 2005.

    Article  ADS  Google Scholar 

  47. M. McQuinn. Constraints on X-ray emissions from the reionization era. MNRAS, 426:1349–1360, October 2012.

    Article  ADS  Google Scholar 

  48. T. Tanaka and Z. Haiman. The Assembly of Supermassive Black Holes at High Redshifts. ApJ, 696:1798–1822, May 2009.

    Article  ADS  Google Scholar 

  49. R. Salvaterra, F. Haardt, M. Volonteri, and A. Moretti. Limits on the high redshift growth of massive black holes. A&A, 545:L6, September 2012.

    Article  ADS  Google Scholar 

  50. W. C. Saslaw and D. Zipoy. Molecular Hydrogen in Pre-galactic Gas Clouds. Nature, 216:976–978, December 1967.

    Article  ADS  Google Scholar 

  51. E. Visbal, Z. Haiman, and G. L. Bryan. A no-go theorem for direct collapse black holes without a strong ultraviolet background. MNRAS, 442:L100–L104, July 2014.

    Article  ADS  Google Scholar 

  52. S. Lepp and J. M. Shull. Molecules in the early universe. ApJ, 280:465–469, May 1984.

    Article  ADS  Google Scholar 

  53. T. Hirasawa. Formation of Protogalaxies and Molecular Processes in Hydrogen Gas. Progress of Theoretical Physics, 42:523–543, September 1969.

    Article  ADS  Google Scholar 

  54. T. Matsuda, H. Satō, and H. Takeda. Cooling of Pre-Galactic Gas Clouds by Hydrogen Molecule. Progress of Theoretical Physics, 42:219–233, August 1969.

    Article  ADS  Google Scholar 

  55. E. Alizadeh and C. M. Hirata. Molecular hydrogen in the cosmic recombination epoch. PRD, 84(8):083011, October 2011.

    Google Scholar 

  56. J. B. Hutchins. The thermal effects of H2 molecules in rotating and collapsing spheroidal gas clouds. ApJ, 205:103–121, April 1976.

    Article  ADS  Google Scholar 

  57. J. Silk. The first stars. MNRAS, 205:705–718, November 1983.

    Article  ADS  Google Scholar 

  58. F. Palla, E. E. Salpeter, and S. W. Stahler. Primordial star formation - The role of molecular hydrogen. ApJ, 271:632–641, August 1983.

    Article  ADS  Google Scholar 

  59. P. J. E. Peebles and R. H. Dicke. Origin of the Globular Star Clusters. ApJ, 154:891–+, December 1968.

    Google Scholar 

  60. P. J. E. Peebles. The Black-Body Radiation Content of the Universe and the Formation of Galaxies. ApJ, 142:1317, November 1965.

    Article  ADS  Google Scholar 

  61. M. J. Rees and J. P. Ostriker. Cooling, dynamics and fragmentation of massive gas clouds - Clues to the masses and radii of galaxies and clusters. MNRAS, 179:541–559, June 1977.

    Article  ADS  Google Scholar 

  62. S. D. M. White and M. J. Rees. Core condensation in heavy halos - A two-stage theory for galaxy formation and clustering. MNRAS, 183:341–358, May 1978.

    Article  ADS  Google Scholar 

  63. A. Dekel and J. Silk. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. ApJ, 303:39–55, April 1986.

    Article  ADS  Google Scholar 

  64. J. Silk. On the fragmentation of cosmic gas clouds. I - The formation of galaxies and the first generation of stars. ApJ, 211:638–648, February 1977.

    Google Scholar 

  65. A. Kashlinsky and M. J. Rees. Formation of population III stars and pregalactic evolution. MNRAS, 205:955–971, December 1983.

    Article  ADS  Google Scholar 

  66. Z. Haiman, A. A. Thoul, and A. Loeb. Cosmological Formation of Low-Mass Objects. ApJ, 464:523, June 1996.

    Article  ADS  Google Scholar 

  67. M. Tegmark, J. Silk, M. J. Rees, A. Blanchard, T. Abel, and F. Palla. How Small Were the First Cosmological Objects? ApJ, 474:1, January 1997.

    Article  ADS  Google Scholar 

  68. G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, and E. L. Wright. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. ApJS, 208:19, October 2013.

    Article  ADS  Google Scholar 

  69. S. Naoz, S. Noter, and R. Barkana. The first stars in the Universe. MNRAS, 373:L98–L102, November 2006.

    Article  ADS  Google Scholar 

  70. N. Yoshida, A. Sokasian, L. Hernquist, and V. Springel. Early Structure Formation and Reionization in a Warm Dark Matter Cosmology. ApJ, 591:L1–L4, July 2003.

    Article  ADS  Google Scholar 

  71. V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature, 435:629–636, June 2005.

    Article  ADS  Google Scholar 

  72. N. Yoshida, A. Sokasian, L. Hernquist, and V. Springel. Early Structure Formation and Reionization in a Cosmological Model with a Running Primordial Power Spectrum. ApJ, 598:73–85, November 2003.

    Article  ADS  Google Scholar 

  73. R. Barkana, Z. Haiman, and J. P. Ostriker. Constraints on Warm Dark Matter from Cosmological Reionization. ApJ, 558:482–496, September 2001.

    Article  ADS  Google Scholar 

  74. F. Pacucci, A. Mesinger, and Z. Haiman. Focusing on warm dark matter with lensed high-redshift galaxies. MNRAS, 435:L53–L57, August 2013.

    Article  ADS  Google Scholar 

  75. R. S. de Souza, A. Mesinger, A. Ferrara, Z. Haiman, R. Perna, and N. Yoshida. Constraints on warm dark matter models from high-redshift long gamma-ray bursts. MNRAS, 432:3218–3227, July 2013.

    Article  ADS  Google Scholar 

  76. T. Abel, G. L. Bryan, and M. L. Norman. The Formation and Fragmentation of Primordial Molecular Clouds. ApJ, 540:39–44, September 2000.

    Article  ADS  Google Scholar 

  77. V. Bromm, P. S. Coppi, and R. B. Larson. The Formation of the First Stars. I. The Primordial Star-forming Cloud. ApJ, 564:23–51, January 2002.

    Google Scholar 

  78. N. Yoshida, T. Abel, L. Hernquist, and N. Sugiyama. Simulations of Early Structure Formation: Primordial Gas Clouds. ApJ, 592:645–663, August 2003.

    Article  ADS  Google Scholar 

  79. F. H. Shu. Self-similar collapse of isothermal spheres and star formation. ApJ, 214:488–497, June 1977.

    Article  ADS  Google Scholar 

  80. B. W. O’Shea and M. L. Norman. Population III Star Formation in a \(\varLambda\) CDM Universe. I. The Effect of Formation Redshift and Environment on Protostellar Accretion Rate. ApJ, 654:66–92, January 2007.

    Google Scholar 

  81. J. H. Wise, M. J. Turk, and T. Abel. Resolving the Formation of Protogalaxies. II. Central Gravitational Collapse. ApJ, 682:745–757, August 2008.

    Google Scholar 

  82. C. Shang, G. L. Bryan, and Z. Haiman. Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir \(\gtrsim \) 104 K. MNRAS, 402:1249–1262, February 2010.

    Article  ADS  Google Scholar 

  83. M. J. Turk, T. Abel, and B. O’Shea. The Formation of Population III Binaries from Cosmological Initial Conditions. Science, 325:601–, July 2009.

    Google Scholar 

  84. A. Stacy, T. H. Greif, and V. Bromm. The first stars: formation of binaries and small multiple systems. MNRAS, 403:45–60, March 2010.

    Article  ADS  Google Scholar 

  85. T. H. Greif, V. Springel, S. D. M. White, S. C. O. Glover, P. C. Clark, R. J. Smith, R. S. Klessen, and V. Bromm. Simulations on a Moving Mesh: The Clustered Formation of Population III Protostars. ApJ, 737:75, August 2011.

    Article  ADS  Google Scholar 

  86. P. C. Clark, S. C. O. Glover, R. S. Klessen, and V. Bromm. Gravitational Fragmentation in Turbulent Primordial Gas and the Initial Mass Function of Population III Stars. ApJ, 727:110, February 2011.

    Article  ADS  Google Scholar 

  87. J. Prieto, P. Padoan, R. Jimenez, and L. Infante. Population III Stars from Turbulent Fragmentation at Redshift ˜11. ApJ, 731:L38, April 2011.

    Article  ADS  Google Scholar 

  88. M. J. Turk, J. S. Oishi, T. Abel, and G. L. Bryan. Magnetic Fields in Population III Star Formation. ApJ, 745:154, February 2012.

    Article  ADS  Google Scholar 

  89. Z. Haiman and A. Loeb. Signatures of Stellar Reionization of the Universe. ApJ, 483:21–37, July 1997.

    Article  ADS  Google Scholar 

  90. J. Tumlinson and J. M. Shull. Zero-Metallicity Stars and the Effects of the First Stars on Reionization. ApJ, 528:L65–L68, January 2000.

    Article  ADS  Google Scholar 

  91. V. Bromm, R. P. Kudritzki, and A. Loeb. Generic Spectrum and Ionization Efficiency of a Heavy Initial Mass Function for the First Stars. ApJ, 552:464–472, May 2001.

    Article  ADS  Google Scholar 

  92. D. Schaerer. On the properties of massive Population III stars and metal-free stellar populations. A&A, 382:28–42, January 2002.

    Article  ADS  Google Scholar 

  93. P. Madau, M. J. Rees, M. Volonteri, F. Haardt, and S. P. Oh. Early Reionization by Miniquasars. ApJ, 604:484–494, April 2004.

    Article  ADS  Google Scholar 

  94. M. Ricotti and J. P. Ostriker. X-ray pre-ionization powered by accretion on the first black holes - I. A model for the WMAP polarization measurement. MNRAS, 352:547–562, August 2004.

    Google Scholar 

  95. A. Mesinger, A. Ferrara, and D. S. Spiegel. Signatures of X-rays in the early Universe. MNRAS, 431:621–637, May 2013.

    Article  ADS  Google Scholar 

  96. M. Jeon, A. H. Pawlik, V. Bromm, and M. Milosavljević. Radiative feedback from high-mass X-ray binaries on the formation of the first galaxies and early reionization. MNRAS, 440:3778–3796, June 2014.

    Article  ADS  Google Scholar 

  97. T. Tanaka, R. Perna, and Z. Haiman. X-ray emission from high-redshift miniquasars: self-regulating the population of massive black holes through global warming. MNRAS, 425:2974–2987, October 2012.

    Article  ADS  Google Scholar 

  98. P. R. Shapiro, M. L. Giroux, and A. Babul. Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium. ApJ, 427:25–50, May 1994.

    Article  ADS  Google Scholar 

  99. Z. Haiman and A. Loeb. Observational Signatures of the First Quasars. ApJ, 503:505–517, August 1998.

    Article  ADS  Google Scholar 

  100. Z. Haiman, M. J. Rees, and A. Loeb. Destruction of Molecular Hydrogen during Cosmological Reionization. ApJ, 476:458–+, February 1997.

    Google Scholar 

  101. K. Omukai and R. Nishi. Photodissociative Regulation of Star Formation in Metal-free Pregalactic Clouds. ApJ, 518:64–68, June 1999.

    Article  ADS  Google Scholar 

  102. Z. Haiman, T. Abel, and M. J. Rees. The Radiative Feedback of the First Cosmological Objects. ApJ, 534:11–24, May 2000.

    Article  ADS  Google Scholar 

  103. B. Ciardi, A. Ferrara, and T. Abel. Intergalactic H 2 Photodissociation and the Soft Ultraviolet Background Produced by Population III Objects. ApJ, 533:594–600, April 2000.

    Article  ADS  Google Scholar 

  104. M. E. Machacek, G. L. Bryan, and T. Abel. Simulations of Pregalactic Structure Formation with Radiative Feedback. ApJ, 548:509–521, February 2001.

    Article  ADS  Google Scholar 

  105. M. Ricotti, N. Y. Gnedin, and J. M. Shull. Feedback from Galaxy Formation: Production and Photodissociation of Primordial H 2. ApJ, 560:580–591, October 2001.

    Article  ADS  Google Scholar 

  106. M. Ricotti, N. Y. Gnedin, and J. M. Shull. The Fate of the First Galaxies. I. Self-consistent Cosmological Simulations with Radiative Transfer. ApJ, 575:33–48, August 2002.

    Google Scholar 

  107. A. Mesinger, G. L. Bryan, and Z. Haiman. Ultraviolet Radiative Feedback on High-Redshift Protogalaxies. ApJ, 648:835–851, September 2006.

    Article  ADS  Google Scholar 

  108. J. H. Wise and T. Abel. Suppression of H 2 Cooling in the Ultraviolet Background. ApJ, 671:1559–1567, December 2007.

    Article  ADS  Google Scholar 

  109. B. W. O’Shea and M. L. Norman. Population III Star Formation in a \(\varLambda\) CDM Universe. II. Effects of a Photodissociating Background. ApJ, 673:14–33, January 2008.

    Google Scholar 

  110. J. L. Johnson, T. H. Greif, and V. Bromm. Occurrence of metal-free galaxies in the early Universe. MNRAS, 388:26–38, July 2008.

    Article  ADS  Google Scholar 

  111. J. H. Wise and T. Abel. How Very Massive Metal-Free Stars Start Cosmological Reionization. ApJ, 684:1–17, September 2008.

    Article  ADS  Google Scholar 

  112. J. H. Wise and T. Abel. Resolving the Formation of Protogalaxies. III. Feedback from the First Stars. ApJ, 685:40–56, September 2008.

    Google Scholar 

  113. D. Whalen, B. W. O’Shea, J. Smidt, and M. L. Norman. How the First Stars Regulated Local Star Formation. I. Radiative Feedback. ApJ, 679:925–941, June 2008.

    Google Scholar 

  114. A. Mesinger, G. L. Bryan, and Z. Haiman. Relic HII regions and radiative feedback at high redshifts. MNRAS, 399:1650–1662, November 2009.

    Article  ADS  Google Scholar 

  115. A. Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. H. Hartmann. How Massive Single Stars End Their Life. ApJ, 591:288–300, July 2003.

    Article  ADS  Google Scholar 

  116. Z. Haiman, M. J. Rees, and A. Loeb. H 2 Cooling of Primordial Gas Triggered by UV Irradiation. ApJ, 467:522–+, August 1996.

    Google Scholar 

  117. S. P. Oh. Reionization by Hard Photons. I. X-Rays from the First Star Clusters. ApJ, 553:499–512, June 2001.

    Google Scholar 

  118. A. Venkatesan, M. L. Giroux, and J. M. Shull. Heating and Ionization of the Intergalactic Medium by an Early X-Ray Background. ApJ, 563:1–8, December 2001.

    Article  ADS  Google Scholar 

  119. S. C. O. Glover and P. W. J. L. Brand. Radiative feedback from an early X-ray background. MNRAS, 340:210–226, March 2003.

    Article  ADS  Google Scholar 

  120. X. Chen and J. Miralda-Escudé. The Spin-Kinetic Temperature Coupling and the Heating Rate due to Lyα Scattering before Reionization: Predictions for 21 Centimeter Emission and Absorption. ApJ, 602:1–11, February 2004.

    Article  ADS  Google Scholar 

  121. M. Ricotti, J. P. Ostriker, and N. Y. Gnedin. X-ray pre-ionization powered by accretion on the first black holes - II. Cosmological simulations and observational signatures. MNRAS, 357:207–219, February 2005.

    Google Scholar 

  122. I. F. Mirabel, M. Dijkstra, P. Laurent, A. Loeb, and J. R. Pritchard. Stellar black holes at the dawn of the universe. A&A, 528:A149, April 2011.

    Article  ADS  Google Scholar 

  123. J. Wolcott-Green and Z. Haiman. Feedback from the infrared background in the early Universe. MNRAS, 425:L51–L55, September 2012.

    Article  ADS  Google Scholar 

  124. M. Dijkstra, Z. Haiman, A. Mesinger, and J. S. B. Wyithe. Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes. MNRAS, 391:1961–1972, December 2008.

    Article  ADS  Google Scholar 

  125. K. Ahn, P. R. Shapiro, I. T. Iliev, G. Mellema, and U.-L. Pen. The Inhomogeneous Background Of H2-Dissociating Radiation During Cosmic Reionization. ApJ, 695:1430–1445, April 2009.

    Article  ADS  Google Scholar 

  126. Z. Haiman and G. P. Holder. The Reionization History at High Redshifts. I. Physical Models and New Constraints from Cosmic Microwave Background Polarization. ApJ, 595:1–12, September 2003.

    Google Scholar 

  127. J. S. B. Wyithe and A. Loeb. Reionization of Hydrogen and Helium by Early Stars and Quasars. ApJ, 586:693–708, April 2003.

    Article  ADS  Google Scholar 

  128. R. Cen. The Implications of Wilkinson Microwave Anisotropy Probe Observations for Population III Star Formation Processes. ApJ, 591:L5–L8, July 2003.

    Article  ADS  Google Scholar 

  129. I. T. Iliev, G. Mellema, P. R. Shapiro, and U.-L. Pen. Self-regulated reionization. MNRAS, 376:534–548, April 2007.

    Article  ADS  Google Scholar 

  130. J. L. Johnson, T. H. Greif, and V. Bromm. Local Radiative Feedback in the Formation of the First Protogalaxies. ApJ, 665:85–95, August 2007.

    Article  ADS  Google Scholar 

  131. S. R. Furlanetto, M. Zaldarriaga, and L. Hernquist. The Growth of H II Regions During Reionization. ApJ, 613:1–15, September 2004.

    Article  ADS  Google Scholar 

  132. R. H. Kramer, Z. Haiman, and S. P. Oh. Feedback from Clustered Sources during Reionization. ApJ, 649:570–578, October 2006.

    Article  ADS  Google Scholar 

  133. A. Mesinger and S. Furlanetto. Efficient Simulations of Early Structure Formation and Reionization. ApJ, 669:663–675, November 2007.

    Article  ADS  Google Scholar 

  134. O. Zahn, A. Mesinger, M. McQuinn, H. Trac, R. Cen, and L. E. Hernquist. Comparison of reionization models: radiative transfer simulations and approximate, seminumeric models. MNRAS, 414:727–738, June 2011.

    Article  ADS  Google Scholar 

  135. R. H. Kramer and Z. Haiman. The thickness of high-redshift quasar ionization fronts as a constraint on the ionizing spectral energy distribution. MNRAS, 385:1561–1575, April 2008.

    Article  ADS  Google Scholar 

  136. R. M. Thomas and S. Zaroubi. Time-evolution of ionization and heating around first stars and miniqsos. MNRAS, 384:1080–1096, March 2008.

    Article  ADS  Google Scholar 

  137. S. R. Furlanetto, S. P. Oh, and F. H. Briggs. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Physics Reports, 433:181–301, October 2006.

    Article  ADS  Google Scholar 

  138. S. Mineo, M. Gilfanov, and R. Sunyaev. X-ray emission from star-forming galaxies - II. Hot interstellarmedium. MNRAS, 426:1870–1883, November 2012.

    Google Scholar 

  139. I. D. McGreer, A. Mesinger, and V. D’Odorico. Model-independent evidence in favour of an end to reionization by z \(\gtrsim \) 6. MNRAS, 447:499–505, February 2015.

    Article  ADS  Google Scholar 

  140. X. Chen and M. Kamionkowski. Particle decays during the cosmic dark ages. PRD, 70(4):043502, August 2004.

    Google Scholar 

  141. S. H. Hansen and Z. Haiman. Do We Need Stars to Reionize the Universe at High Redshifts? Early Reionization by Decaying Heavy Sterile Neutrinos. ApJ, 600:26–31, January 2004.

    Article  ADS  Google Scholar 

  142. S. Kasuya, M. Kawasaki, and N. Sugiyama. Partially ionizing the universe by decaying particles. PRD, 69(2):023512, January 2004.

    Google Scholar 

  143. P. L. Biermann and A. Kusenko. Relic keV Sterile Neutrinos and Reionization. Physical Review Letters, 96(9):091301, March 2006.

    Google Scholar 

  144. E. Ripamonti, M. Mapelli, and A. Ferrara. The impact of dark matter decays and annihilations on the formation of the first structures. MNRAS, 375:1399–1408, March 2007.

    Article  ADS  Google Scholar 

  145. Y. A. Shchekinov and E. O. Vasiliev. Primordial star formation triggered by UV photons from UHECR. A&A, 419:19–23, May 2004.

    Article  ADS  Google Scholar 

  146. A. Stacy and V. Bromm. Impact of cosmic rays on Population III star formation. MNRAS, 382:229–238, November 2007.

    Article  ADS  Google Scholar 

  147. X. Chen, A. Cooray, N. Yoshida, and N. Sugiyama. Can non-Gaussian cosmological models explain the WMAP high optical depth for reionization? MNRAS, 346:L31–L35, December 2003.

    Article  ADS  Google Scholar 

  148. M. A. Alvarez, P. R. Shapiro, K. Ahn, and I. T. Iliev. Implications of WMAP 3 Year Data for the Sources of Reionization. ApJ, 644:L101–L104, June 2006.

    Article  ADS  Google Scholar 

  149. E. Zackrisson, C.-E. Rydberg, D. Schaerer, G. Östlin, and M. Tuli. The Spectral Evolution of the First Galaxies. I. James Webb Space Telescope Detection Limits and Color Criteria for Population III Galaxies. ApJ, 740:13, October 2011.

    Google Scholar 

  150. W. Zheng, M. Postman, A. Zitrin, J. Moustakas, X. Shu, S. Jouvel, O. Høst, A. Molino, L. Bradley, D. Coe, L. A. Moustakas, M. Carrasco, H. Ford, N. Benítez, T. R. Lauer, S. Seitz, R. Bouwens, A. Koekemoer, E. Medezinski, M. Bartelmann, T. Broadhurst, M. Donahue, C. Grillo, L. Infante, S. W. Jha, D. D. Kelson, O. Lahav, D. Lemze, P. Melchior, M. Meneghetti, J. Merten, M. Nonino, S. Ogaz, P. Rosati, K. Umetsu, and A. van der Wel. A magnified young galaxy from about 500 million years after the Big Bang. Nature, 489:406–408, September 2012.

    Google Scholar 

  151. D. Coe, A. Zitrin, M. Carrasco, X. Shu, W. Zheng, M. Postman, L. Bradley, A. Koekemoer, R. Bouwens, T. Broadhurst, A. Monna, O. Host, L. A. Moustakas, H. Ford, J. Moustakas, A. van der Wel, M. Donahue, S. A. Rodney, N. Benítez, S. Jouvel, S. Seitz, D. D. Kelson, and P. Rosati. CLASH: Three Strongly Lensed Images of a Candidate z ≈ 11 Galaxy. ApJ, 762:32, January 2013.

    Article  ADS  Google Scholar 

  152. M. Postman, D. Coe, N. Benítez, L. Bradley, T. Broadhurst, M. Donahue, H. Ford, O. Graur, G. Graves, S. Jouvel, A. Koekemoer, D. Lemze, E. Medezinski, A. Molino, L. Moustakas, S. Ogaz, A. Riess, S. Rodney, P. Rosati, K. Umetsu, W. Zheng, A. Zitrin, M. Bartelmann, R. Bouwens, N. Czakon, S. Golwala, O. Host, L. Infante, S. Jha, Y. Jimenez-Teja, D. Kelson, O. Lahav, R. Lazkoz, D. Maoz, C. McCully, P. Melchior, M. Meneghetti, J. Merten, J. Moustakas, M. Nonino, B. Patel, E. Regös, J. Sayers, S. Seitz, and A. Van der Wel. The Cluster Lensing and Supernova Survey with Hubble: An Overview. ApJS, 199:25, April 2012.

    Google Scholar 

  153. A. Mesinger, B. D. Johnson, and Z. Haiman. The Redshift Distribution of Distant Supernovae and Its Use in Probing Reionization. ApJ, 637:80–90, January 2006.

    Article  ADS  Google Scholar 

  154. M. Righi, C. Hernández-Monteagudo, and R. A. Sunyaev. Carbon monoxide line emission as a CMB foreground: tomography of the star-forming universe with different spectral resolutions. A&A, 489:489–504, October 2008.

    Article  ADS  MATH  Google Scholar 

  155. E. Visbal and A. Loeb. Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines. JCAP, 11:16, November 2010.

    Article  ADS  Google Scholar 

  156. E. Visbal, Z. Haiman, and G. L. Bryan. Looking for Population III stars with He II line intensity mapping. MNRAS, submitted, e-print ArXiv:1501.03177, January 2015.

    Google Scholar 

Download references

Acknowledgements

I thank my students and collaborators, who taught me a lot about reionization, the US federal agencies NASA and NSF for funding much of my research, and Andrei Mesinger for the initiative to put together this volume, and his patience and dedication during the production process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Haiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haiman, Z. (2016). Cosmic Reionization and the First Nonlinear Structures in the Universe. In: Mesinger, A. (eds) Understanding the Epoch of Cosmic Reionization. Astrophysics and Space Science Library, vol 423. Springer, Cham. https://doi.org/10.1007/978-3-319-21957-8_1

Download citation

Publish with us

Policies and ethics