Skip to main content

Understanding Physical Aging in Ultrathin Polymer Films via Molecular Simulations

  • Chapter
  • First Online:

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Physical aging in glassy polymer films has attracted much attention in the past two decades due to its strong correlation with the lifetime of polymer-based nano-devices. However, understanding the physical aging from the simulation point of view is still a big challenge due to the huge differences between the simulation and experimental time scales (microseconds vs. hours, days, and even years). Recently, we made a survey on the free volume diffusion and annihilation (FVDA) model as employed in dynamic Monte Carlo simulations to study the volume contraction of ultrathin polymer films. In this chapter, based on our recently developed simulation route, we discuss in what sense the simulation results could be applied to understand the physical aging in experiments. Some new insights, such as the slowing down of accelerated aging at extremely small thickness, and the existence of new confinement length scale in ultrathin polymer films based on the inversed free volume diffusion process, are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Simon, F.: Z. Anorg. Allgem. Chem. 203 (1931)

    Google Scholar 

  2. Struik, L.C.E.: Physical Aging in Amorphous Polymers and Other Materials. Elsevier, Amsterdam (1978)

    Google Scholar 

  3. Kovacs, A.J.: Adv. Polym. Sci. 3, 394 (1963)

    Google Scholar 

  4. Hodge, I.M.: Science 267, 1945 (1995)

    Article  ADS  Google Scholar 

  5. Hutchinson, J.M.: Prog. Polym. Sci. 20, 703 (1995)

    Article  Google Scholar 

  6. Priestley, R.D.: Soft Matter 5, 919 (2009)

    Article  ADS  Google Scholar 

  7. Pfromm, P.H., Pinnau, I., Koros, W.J.: J. Appl. Polym. Sci. 48, 2161 (1993)

    Article  Google Scholar 

  8. Rezac, M.E., Pfromm, P.H., Costello, L.M., Koros, W.J.: Ind. Eng. Chem. Res. 32, 1921 (1993)

    Article  Google Scholar 

  9. McKenna, G.B.: Comput. Mater. Sci. 4, 349 (1995)

    Article  Google Scholar 

  10. Pfromm, P.H., Koros, W.J.: Polymer 36, 2379 (1995)

    Article  Google Scholar 

  11. Dorkenoo, K.D., Pfromm, P.H.: J. Polym. Sci. B 37, 2239 (1999)

    Article  Google Scholar 

  12. Dorkenoo, K.D., Pfromm, P.H.: Macromolecules 33, 3747 (2000)

    Article  ADS  Google Scholar 

  13. McCaig, M.S., Paul, D.R.: Polymer 41, 629 (2000)

    Article  Google Scholar 

  14. Huang, Y., Paul, D.R.: Polymer 45, 8377 (2004)

    Article  Google Scholar 

  15. Huang, Y., Paul, D.R.: J. Mem. Sci. 244, 167 (2004)

    Article  Google Scholar 

  16. Huang, Y., Paul, D.R.: Ind. Eng. Chem. Res. 46, 2342 (2007)

    Article  Google Scholar 

  17. Baker, E.A., Rittigstein, P., Torkelson, J.M., Roth, C.B.: J. Polym. Sci. B 47, 2509 (2009)

    Article  Google Scholar 

  18. Priestley, R.D., Broadbelt, L.J., Torkelson, J.M.: Macromolecules 38, 654 (2005)

    Article  ADS  Google Scholar 

  19. Punsalan, D., Koros, W.J.: Polymer 46, 10214 (2005)

    Article  Google Scholar 

  20. Ellison, C.J., Kim, S.D., Hall, D.B., Torkelson, J.M.: Eur. Phys. J. E 8, 155 (2002)

    Article  Google Scholar 

  21. Kawana, S., Jones, R.A.L.: Eur. Phys. J. E 10, 223 (2003)

    Article  Google Scholar 

  22. Pye, J.E., Rohald, K.A., Baker, E.A., Roth, C.B.: Macromolecules 43, 8296 (2010)

    Article  Google Scholar 

  23. Frieberg, B., Glynos, E., Green, P.F.: Phys. Rev. Lett. 108, 268304 (2012)

    Article  ADS  Google Scholar 

  24. Frieberg, B., Glynos, E., Sakellariou, G., Green, P.F.: ACS Macro Lett. 1, 636 (2012)

    Article  Google Scholar 

  25. Meyer, E.F., Jamieson, A.M., Simha, R., Palmen, J.H.M., Booij, H.C., Maurer, F.H.J.: Polymer 31, 243 (1990)

    Article  Google Scholar 

  26. Royal, J.S., Torkelson, J.M.: Macromolecules 23, 3536 (1990)

    Article  ADS  Google Scholar 

  27. Royal, J.S., Torkelson, J.M.: Macromolecules 25, 4792 (1992)

    Article  ADS  Google Scholar 

  28. Royal, J.S., Torkelson, J.M.: Macromolecules 26, 5331 (1993)

    Article  ADS  Google Scholar 

  29. Priestley, R.D., Ellison, C.J., Broadbelt, L.J., Torkelson, J.M.: Science 309, 456 (2005)

    Article  ADS  Google Scholar 

  30. Lee, H.-N., Ediger, M.D.: J. Chem. Phys. 133, 014901 (2010)

    Article  ADS  Google Scholar 

  31. Napolitano, S., Wubbenhorst, M.: Nat. Commun. 2, 260 (2011)

    Article  ADS  Google Scholar 

  32. Greiner, R., Schwarzl, F.R.: Rheol. Acta 23, 378 (1984)

    Article  Google Scholar 

  33. Boucher, V.M., Cangialosi, D., Alegria, A., Colmenero, J.: Macromolecules 45, 5296 (2012)

    Article  Google Scholar 

  34. Alfrey, T., Goldfinger, G., Mark, H.: J. Appl. Phys. 14, 700 (1943)

    Article  ADS  Google Scholar 

  35. Curro, J.G., Lagasse, R.R., Simha, R.: Macromolecules 15, 1621 (1982)

    Article  ADS  Google Scholar 

  36. Kovacs, A.J., Stratton, R.A., Ferry, J.D.: J. Phys. Chem. 67, 152 (1963)

    Article  Google Scholar 

  37. Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., Ramos, A.R.: J. Polym. Sci. B 17, 1097 (1979)

    Google Scholar 

  38. McCaig, M.S., Paul, D.R., Barlow, J.W.: Polymer 41, 639 (2000)

    Article  Google Scholar 

  39. Cangialosi, D., Wubbenhorst, M., Groenewold, J., Mendes, E., Schut, H., van Veen, A., Picken, S.J.: Phys. Rev. B 70, 224213 (2004)

    Article  ADS  Google Scholar 

  40. Berthier, L., Biroli, G.: Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  41. Cangialosi, D., Boucher, V.M., Alegria, A., Colmenero, J.: Phys. Rev. Lett. 111, 095701 (2013)

    Article  ADS  Google Scholar 

  42. Andrejew, E., Baschnagel, J.: Phys. A 233, 117 (1996)

    Article  Google Scholar 

  43. Klompen, E.T.J., Engels, T.A.P., Govaert, L.E., Meijer, H.E.H.: Macromolecules 38, 6997 (2005)

    Article  ADS  Google Scholar 

  44. Wang, X.-Y., Willmore, F.T., Raharjo, R.D., Wang, X., Freeman, B.D., Hill, A.J., Sanchez, I.C.: J. Phys. Chem. B 110, 16685 (2006)

    Article  Google Scholar 

  45. Warren, M., Rottler, J.: Phys. Rev. E 76, 031802 (2007)

    Article  ADS  Google Scholar 

  46. Rottler, J.: J. Phys.: Condens. Matter 21, 463101 (2009)

    ADS  Google Scholar 

  47. Liu, A.Y.H., Rottler, J.: J. Polym. Sci. B 47, 1789 (2009)

    Article  Google Scholar 

  48. Arnoult, M., Saiter, J.M., Pareige, C., Meseguer Duenas, J.M., Gomez Ribelles, J.L., Molina Mateo, J.: J. Chem. Phys. 130, 214905 (2009)

    Article  ADS  Google Scholar 

  49. Chen, X., Ye, Y., Hao, L.: J. Chem. Phys. 137, 044907 (2012)

    Article  ADS  Google Scholar 

  50. Hou, T., Chen, H.: Polymer 53, 2509 (2012)

    Article  Google Scholar 

  51. Shavit, A., Douglas, J.F., Riggleman, R.A.: J. Chem. Phys. 138, 12A528 (2013)

    Article  Google Scholar 

  52. Binder, K., Baschnagel, J., Paul, W.: Prog. Polym. Sci. 28, 115 (2003)

    Article  MATH  Google Scholar 

  53. Hu, W., Frenkel, D.: Adv. Polym. Sci. 191, 1 (2005)

    Article  Google Scholar 

  54. de Gennes, P.G.: Eur. Phys. J. E 2, 201 (2000)

    Article  Google Scholar 

  55. de Gennes, P.G.: C. R. Acad. Sci. Paris, Serie IV Phys. Astrophys. 1, 1179 (2000)

    Google Scholar 

  56. Napolitano, S., Rotella, C., Wubbenhorst, M.: Acs Macro Lett. 1, 1189 (2012)

    Article  Google Scholar 

  57. Milchev, A., Binder, K.: Europhys. Lett. 59, 81 (2002)

    Article  ADS  Google Scholar 

  58. Williams, M.L., Landel, R.F., Ferry, J.D.: J. Am. Chem. Soc. 77, 3701 (1955)

    Article  Google Scholar 

  59. Gedde, U.W.: Polymer Physics. Chapman & Hall, London (1995)

    Google Scholar 

  60. Brandrup, J., Immergut, E.H., Grulke, E.A.: Polymer Handbook, 4th edn. Wiley, New York (2003)

    Google Scholar 

  61. Tang, Q., Hu, W.: Phys. Chem. Chem. Phys. 15, 20679 (2013)

    Article  Google Scholar 

  62. Tang, Q., Hu, W., Napolitano, S.: Phys. Rev. Lett. 112, 148306 (2014)

    Article  ADS  Google Scholar 

  63. Bennemann, C., Donati, C., Baschnagel, J., Glotzer, S.C.: Nature 399, 246 (1999)

    Article  ADS  Google Scholar 

  64. Baljon, A.R.C., Billen, J., Khare, R.: Phys. Rev. Lett. 93, 255701 (2004)

    Article  ADS  MATH  Google Scholar 

  65. Zhou, C., Chung, T.S., Wang, R., Goh, S.H.: J. Appl. Polym. Sci. 92, 1758 (2004)

    Article  Google Scholar 

  66. Huang, Y., Paul, D.R.: Macromolecules 38, 10148 (2005)

    Article  ADS  Google Scholar 

  67. de Gennes, P.G.: J. Chem. Phys. 55, 572 (1971)

    Article  ADS  Google Scholar 

  68. Hu, W.: J. Chem. Phys. 109, 3686 (1998)

    Article  ADS  MATH  Google Scholar 

  69. Kremer, K., Binder, K.: Comput. Phys. Rep. 7, 259 (1988)

    Article  Google Scholar 

  70. Siretanu, I., Chapel, J.P., Drummond, C.: Macromolecules 45, 1001 (2012)

    Article  ADS  Google Scholar 

  71. Wignall, G.D., Schelten, J., Ballard, D.G.H.: J. Appl. Cryst. 7, 190 (1974)

    Article  Google Scholar 

  72. Guo, Y., Morozov, A., Schneider, D., Chung, J., Zhang, C., Waldmann, M., Yao, N., Fytas, G., Arnold, C.B., Priestley, R.D.: Nat. Mater. 11, 337 (2012)

    Article  ADS  Google Scholar 

  73. Swallen, S.F., Kearns, K.L., Mapes, M.K., Kim, Y.S., McMahon, R.J., Ediger, M.D., Wu, T., Yu, L., Satija, S.: Science 315, 353 (2007)

    Article  ADS  Google Scholar 

  74. Singh, S., Ediger, M.D., de Pablo, J.J.: Nat. Mater. 12, 139 (2013)

    Article  ADS  Google Scholar 

  75. Capponi, S., Napolitano, S., Wubbenhorst, M.: Nat. Commun. 3, 1233 (2012)

    Article  ADS  Google Scholar 

  76. Lang, M., Sommer, J.U.: Phys. Rev. Lett. 104, 177801 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The results reported here were obtained in fruitful collaboration with Prof. Simone Napolitano. The authors’ research was supported by NSFC (Grant Nos. 20825415 and 21274061), National Basic Research Program of China (Grant No. 2011CB606100), and China Postdoctoral Science Foundation (Grant No. 2013M531319).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiyun Tang or Wenbing Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tang, Q., Hu, W. (2015). Understanding Physical Aging in Ultrathin Polymer Films via Molecular Simulations. In: Napolitano, S. (eds) Non-equilibrium Phenomena in Confined Soft Matter. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-21948-6_4

Download citation

Publish with us

Policies and ethics