Advertisement

Structural Relaxation of Confined Glassy Polymers

  • Yunlong Guo
  • Rodney D. Priestley
Chapter
Part of the Soft and Biological Matter book series (SOBIMA)

Abstract

Glasses are non-equilibrium, amorphous materials. They undergo glassy-state structural relaxation towards thermodynamic equilibrium. Consequently, glasses exhibit time-dependent engineering properties in a process termed physical aging. Understanding structural relaxation is important for predicting long-term material properties and useful lifetimes. Here, we highlight the influence of nanoscale confinement and interfaces on the structural relaxation of polymers. Whenever possible, we also discuss correlations or lack thereof between the well-documented influence of confinement on the glass transition temperature (Tg). How confinement might be used to engineer different aging responses in polymer glasses is also mentioned. Finally, we conclude with perspectives and future work.

Keywords

Glass transition temperature Structural relaxation Aging Confinement Thin films Nanocomposites Nanoparticles 

Notes

Acknowledgments

RDP acknowledge support of the National Science Foundation (NSF) Materials Research Science and Engineering Center program through the Princeton Center for Complex Materials (DMR-0819860; DMR-1420541). YG acknowledge the University of Michigan-Shanghai Jiao Tong University Joint Institute for support during preparation of the book chapter.

References

  1. 1.
    Koros, W.J., Fleming, G.K.: Membrane-based gas separation. J. Membr. Sci. 83, 1 (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Mundra, M.K., Donthu, S.K., Dravid, V.P., Torkelson, J.M.: Effect of spatial confinement on the glass transition temperature of patterned polymer nanostructures. Nano Lett. 7, 713 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Winey, K.I., Vaia, R.A.: Polymer nanocomposites. MRS Bull. 32, 314 (2007)CrossRefGoogle Scholar
  4. 4.
    Keddie, J.L., Jones, R.A.L., Cory, R.A.: Interface and surface effects on the glass transition temperature in thin polymer films. Faraday Discuss. 98, 219 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    Keddie, J.L., Jones, R.A.L., Cory, R.A.: Size-dependent depression of the glass transition temperature in polymer films. Europhysics 27, 59 (1994)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Priestley, R.D.: Physical aging of confined glasses. Soft Matter 5, 919 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Torres, J.M., Wang, C., Coughlin, E.B., Bishop, J.P., Register, R.A., Riggleman, R.A., Stafford, C.M., Vogt, B.D.: Influence of chain stiffness on thermal and mechanical properties of polymer thin films. Macromolecules 44, 9040 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Stafford, C., Vogt, B.D., Harrison, C., Julthongpiput, D., Huang, R.: Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39, 5095 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Stafford, C.M., Roskov, K.E., Epps, I.T.H., Fasolka, M.J.: Generating thickness gradients of thin polymer films via flow coating. Rev. Sci. Instrum. 77, 023908 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    O’Connell, P.A., McKenna, G.B.: Rheological measurements of the thermoviscoelastic response of ulthathin polymer films. Science 307, 1760 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Vanroy, B., Wubbenhorst, M., Napolitano, S.: Crystallization of thin polymer layers confined between two adsorbing walls. Acs Macro Lett. 2, 168 (2013)CrossRefGoogle Scholar
  12. 12.
    Napolitano, S., Wubbenhorst, M.: Slowing down of the crystallization kinetics in ultrathin polymer films: a size or an interface effect? Macromolecules 39, 5967 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Elmahdy, M.M., Chrissopoulou, K., Afratis, A., Floudas, G., Anastasiadis, S.H.: Effect of confinement on polymer segmental motion and ion mobility in peo/layered silicate nanocomposites. Macromolecules 39, 5170 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Fukao, K., Miyamoto, Y.: Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys. Rev. E 61, 1743 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Fukao, K., Miyamoto, Y.: Glass transition temperature and dynamics of alpha-process in thin polymer films. Europhys. Lett. 46, 649 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Hall, D.B., Hooker, J.C., Torkelson, J.M.: Ultrathin polymer films near the glass transition: effect on the distribution of alpha-relaxation times as measured by second harmonic generation. Macromolecules 30, 667 (1997)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Forrest, J.A., Dalnoki-Veress, K., Stevens, J.R., Dutcher, J.R.: Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Forrest, J.A., Dalnoki-Veress, K., Dutcher, J.R.: Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys. Rev. E 56, 5705 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Sharp, J.S., Forrest, J.A.: Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys. Rev. Lett. 91, 235701 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Rittigstein, P., Priestley, R.D., Broadbelt, L.J., Torkelson, J.M.: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6, 278 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Ellison, C.J., Torkelson, J.M.: The distribution of glass transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Priestley, R.D., Mundra, M.K., Barnett, N., Broadbelt, L.J., Torkelson, J.M.: Effects of nanoscale confinement and interfaces on the glass transition of a series of poly(n-methyacrylate) films. Aust. J. Chem. 60, 765 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Sasaki, T., Shimizu, A., Mourey, T.H., Thurau, C.T., Ediger, M.D.: Glass transition of small polystyrene spheres in aqueous suspensions. J. Chem. Phys. 119, 8730 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Chen, R., Huang, D.: Preparation of polymer nanoparticles, and the effect of nanoconfinement on glass transition, structural relaxation and crystallization. Front. Chem. China 6, 332 (2011)CrossRefGoogle Scholar
  25. 25.
    Raegen, A., Massa, M., Forrest, J., Dalnoki-Veress, K.: Effect of atmosphere on reductions in the glass transition of thin polystyrene films. Eur. Phys. J. E 27, 375 (2008)CrossRefGoogle Scholar
  26. 26.
    Napolitano, S., Wubbenhorst, M.: The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat. Commun. 2, 260 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Roth, C.B., Dutcher, J.R.: Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur. Phys. J. E 12, S103 (2003)CrossRefGoogle Scholar
  28. 28.
    Priestley, R.D., Mundra, M.K., Barnett, N.J., Broadbelt, L.J., Torkelson, J.M.: Effects of nanoscale confinement and interfaces on the glass transition temperatures of a series of poly(n-methacrylate) films. Aust. J. Chem. 60, 765 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Forrest, J.A., Dalnoki-Veress, K.: The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94, 167 (2001)CrossRefGoogle Scholar
  30. 30.
    Alcoutlabi, M., McKenna, G.B.: Effects of confinement on material behaviour at the nanometre size scale. J. Phys. Condens. Matter 17, R461 (2005)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Serghei, A.: Challenges in glassy dynamics of polymers. Macromol. Chem. Phys. 209, 1415 (2008)CrossRefGoogle Scholar
  32. 32.
    McKenna, G.B.: Ten (or more) years of dynamics in confinement: Perspectives for 2010. Eur. Phys. J. Spec. Top. 189, 285 (2010)CrossRefGoogle Scholar
  33. 33.
    Ngai, K.L., Rizos, A.K., Plazek, D.J.: Reduction of the glass temperature of thin freely standing polymer films caused by the decrease of the coupling parameter in the coupling model. J. Non-Cryst. Solids 235, 435 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    de Gennes, P.G.: Glass transitions in thin polymer films. Eur. Phys. J. E 2, 201 (2000)CrossRefGoogle Scholar
  35. 35.
    Long, D., Lequeux, F.: Heterogeneous dynamics at the glass transition in van der waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371 (2001)CrossRefzbMATHGoogle Scholar
  36. 36.
    Napolitano, S., Capponi, S., Vanroy, B.: Glassy dynamics of soft matter under 1d confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 36, 61 (2013)CrossRefGoogle Scholar
  37. 37.
    Serghei, A., Huth, H., Schick, C., Kremer, F.: Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules 41, 3636 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Serghei, A., Tress, M., Kremer, F.: The glass transition of thin polymer films in relation to the interfacial dynamics. J. Chem. Phys. 131, 154904 (2009)Google Scholar
  39. 39.
    Erber, M., Tress, M., Mapesa, E.U., Serghei, A., Eichhorn, K.J., Voit, B., Kremer, F.: Glassy dynamics and glass transition in thin polymer layers of pmma deposited on different substrates. Macromolecules 43, 7729 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Tress, M., Erber, M., Mapesa, E.U., Huth, H., Muller, J., Serghei, A., Schick, C., Eichhorn, K.J., Volt, B., Kremer, F.: Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43, 9937 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Struik, L.C.E.: Phsyical aging in amorphous polymers and other materials. Elsevier, Amsterdam (1978)Google Scholar
  42. 42.
    Pfromm, P.H., Koros, W.J.: Accelerated physical aging of thin glassy polymer films: Evidence from gas transport measurments. Polymer 36, 2379 (1995)CrossRefGoogle Scholar
  43. 43.
    Huang, Y., Paul, D.R.: Physical aging of thin glassy polymer films monitored by gas permeability. Polymer 45, 8377 (2004)CrossRefGoogle Scholar
  44. 44.
    Kawana, S., Jones, R.A.L.: Effect of physical ageing in thin glassy polymer films. Eur. Phys. J. E 10, 223 (2003)CrossRefGoogle Scholar
  45. 45.
    Priestley, R.D., Broadbelt, L.J., Torkelson, J.M.: Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: effects of attractive vs neutral polymer-substrate interactions measured by fluorescence. Macromolecules 38, 654 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    Priestley, R.D., Ellison, C.J., Broadbelt, L.J., Torkelson, J.M.: Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Rittigstein, P., Priestley, R.D., Broadbelt, L.J., Torkelson, J.M.: Model polymer nanocomposites provide understanding of confinement effects in real nanocomposites. Nat. Mater. 6, 278 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Pye, J.E., Rohald, K.A., Baker, E.A., Roth, C.B.: Physical aging in ultrathin polystyrene films: Evidence of a gradient in dynamics at the free surface and its connection to the glass transition temperature reductions. Macromolecules 43, 8296 (2010)CrossRefzbMATHGoogle Scholar
  49. 49.
    Wu, J., Huang, G., Wang, X., He, X., Lei, H.: Confinement effect of polystyrene on the relaxation behavior of polyisobutylene. J. Polym. Sci. B: Polym. Phys. 48, 2165 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Zhou, C., Chung, T.-S., Wang, R., Goh, S.H.: A governing equation for physical aging of thick and thin fluoropolyimide films. J. Appl. Polym. Sci. 92, 1758 (2004)CrossRefGoogle Scholar
  51. 51.
    Cangialosi, D., Boucher, V.M., Alegria, A., Colmenero, J.: Physical aging in polymers and polymer nanocomposites: Recent results and open questions. Soft Matter 9, 8619 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Koh, Y.P., Simon, S.L.: Structural relaxation of stacked ultrathin polystyrene films. J. Polym. Sci. Part B Polym. Phys. 46, 2714 (2008)ADSzbMATHGoogle Scholar
  53. 53.
    Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    McKenna, G.B.: Glass formation and glassy behavior. In: Booth, C., Price C. (ed.) Comprehensive Polymer Science. Polymer properties, vol. 2, p. 311. Pergamon, Oxford (1989)Google Scholar
  55. 55.
    Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    Ediger, M.D.: Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    Kohlrausch, R.: Theorie des elektrischen ruckstandes in der leidener flasche. Annu. Phys. Chem. 91, 179 (1874)Google Scholar
  58. 58.
    Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970)CrossRefGoogle Scholar
  59. 59.
    Ngai, K.L., Capaccioli, S.: On the relevance of the coupling model to experiments. J. Phys. Condens. Matter 19, 205114 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    Dhinojwala, A., Wong, G.K., Torkelson, J.M.: Rotational reorientation dynamics of nonlinear optical chromophores in rubbery and glassy polymers: A-relaxation dynamics probed by second harmonic generation and dielectric relaxation. Macromolecules 26, 5943 (1993)ADSCrossRefGoogle Scholar
  61. 61.
    Dhinojwala, A., Wong, G.K., Torkelson, J.M.: Rotational reorientation dynamics of disperse red 1 in polystyrene: A-relaxation dynamics probed by second harmonic generation and dielectric relaxation. J. Chem. Phys. 100, 6046 (1994)ADSCrossRefGoogle Scholar
  62. 62.
    Thurau, C.T., Ediger, M.D.: Influence of spatially heterogeneous dynamics on physical aging of polystyrene. J. Chem. Phys. 116, 9089 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    Thurau, C.T., Ediger, M.D.: Spatially heterogeneous dynamics during phsyical aging far below the glass transition temperature. J. Polym. Sci. Part B Polym. Phys. 40, 2463 (2002)ADSCrossRefzbMATHGoogle Scholar
  64. 64.
    Vogel, H.: Das temperatur-abhangigkeitsgesetz der viskositat von flussigkeiten. Phys. Unserer Zeit 22, 645 (1921)Google Scholar
  65. 65.
    Tammann, G., Hesse, W.: Die abhangigkeit der viskositat von der temperatur bei unterkuhlten flussigkeiten. Z. Anorg. Allg. Chem. 156, 245 (1926)CrossRefGoogle Scholar
  66. 66.
    Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925)CrossRefGoogle Scholar
  67. 67.
    Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 1471 (1955)CrossRefzbMATHGoogle Scholar
  68. 68.
    Tant, M.R., Wilkes, G.L.: An overview of the nonequilibrium behavior of polymer glasses. Polym. Eng. Sci. 21, 874 (1981)CrossRefGoogle Scholar
  69. 69.
    Doolittle, A.K.: Studies in newtonian flow. Ii. The dependence of the viscosity of liquids on free-space. J. Appl. Phys. 22, 1471 (1951)ADSCrossRefGoogle Scholar
  70. 70.
    Kovacs, A.J.: Transition vitreuse dans les polymeres amorphes. Etude phenomenologique. In Fortschritte der hochpolymeren-forschung, p. 394 (1963)Google Scholar
  71. 71.
    McKenna, G.B.: Glassy states: Concentration glasses and temperature glasses compared. J. Non-Cryst. Solids 353, 3820 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    Guo, Y., Bradshaw, R.D.: Isothermal physical aging characterization of polyether-ether-ketone (peek) and polyphenylene sulfide (pps) films by creep and stress relaxation. Mech. Time-Depend. Mater. 11, 61 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    Guo, Y., Bradshaw, R.D.: Long-term creep of polyphenylene sulfide (pps) subjected to complex thermal histories: The effects of nonisothermal physical aging. Polymer 50, 4048 (2009)CrossRefGoogle Scholar
  74. 74.
    Guo, Y., Wang, N., Bradshaw, R.D., Brinson, L.C.: Modeling mechanical aging shift factors in glassy polymers during nonisothermal physical aging. I. Experiments and kahr-ate model prediction. J. Polym. Sci. Part B Polym. Phys. 47, 340 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    Kohlrausch, F.: Ueber die elastiche nachwirkung bei der torsion. Poogendorff’s Annalen der Physik und Chemie 119, 337 (1863)ADSCrossRefGoogle Scholar
  76. 76.
    McKenna G.B., Simon, S.L.: The glass transition: Its measurement and underlying physics. In: Cheng S.Z.D. (ed.) Handbook of thermal analysis and calorimetry. 2002, Elsevier ScienceGoogle Scholar
  77. 77.
    Bernazzani, P., Simon, S.L.: Volume recovery of polystyrene: Evolution of the characteristic relaxation time. J. Non-Cryst. Solids 307–310, 470 (2002)CrossRefGoogle Scholar
  78. 78.
    Pramoda, K.P., Liu, T.: Effect of moisture on the dynamic mechanical relaxation of polyamide-6/clay nanocomposites. J. Polym. Sci. Part B Polym. Phys. 42, 1823 (2004)ADSCrossRefGoogle Scholar
  79. 79.
    Putz, K.W., Palmeri, M.J., Cohn, R.B., Andrews, R., Brinson, L.C.: Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules 41, 6752 (2008)ADSCrossRefGoogle Scholar
  80. 80.
    Sobieski, J.W., Simon, S.L., Plazek, D.J.: Dilatometric studies of physical aging of polyetherimide. J. Therm. Anal. 49, 455 (1997)CrossRefGoogle Scholar
  81. 81.
    Srebnik, S.: Physical association of polymers with nanotubes. J. Polym. Sci. Part B Polym. Phys. 46, 2711 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    Svoboda, R., Pustkova, P., Malek, J.: Structural relaxation of polyvinyl acetate (pvac). Polymer 49, 3176 (2008)CrossRefGoogle Scholar
  83. 83.
    Zheng, Y., McKenna, G.B.: Structural recovery in a model epoxy: Comparison of responses after temperature and relative humidity jumps. Macromolecules 36, 2387 (2003)ADSCrossRefGoogle Scholar
  84. 84.
    Papakonstantopoulos, G.J., Yoshimoto, K., Doxastakis, M., Nealey, P.F., de Pablo, J.J.: Local mechanical properties of polymeric nanocomposites. Phys. Rev. E 72, 031801 (2005)ADSCrossRefGoogle Scholar
  85. 85.
    Di, X., Win, K.Z., McKenna, G.B., Narita, T., Lequeux, F., Pullela, S.R., Cheng, Z.: Signatures of structural recovery in colloidal glasses. Phys. Rev. Lett. 106, 095701 (2011)ADSCrossRefGoogle Scholar
  86. 86.
    Rendell, R.W., Ngai, K.L.: Evidence for anomalous structural relaxation in SiO2 films. Appl. Phys. Lett. 57, 2428 (1990)ADSCrossRefGoogle Scholar
  87. 87.
    Svoboda, R., Pustkova, P., Malek, J.: Relaxation behavior of glassy selenium. J. Phys. Chem. Solids 68, 850 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    Badrinarayanan, P., Zheng, W., Li, Q., Simon, S.L.: The glass transition versus the fictive temperature. J. Non-Crystal. Solids 353, 2603 (2007)ADSCrossRefGoogle Scholar
  89. 89.
    McKenna, G.B., Leterrier, Y., Schultheisz, C.R.: The evolution of material properties during physical aging. Polym. Eng. Sci. 35, 403 (1995)CrossRefGoogle Scholar
  90. 90.
    Schultheisz, C.R., McKenna, G.B., Leterrier, Y., Stefanis, E.: A comparison of structure and aging time shift factors from simultaneous volume and mechanical measurements. In: Proceedings of 1995 SEM Spring Conference on Experimental Mechanics (1995)Google Scholar
  91. 91.
    Simon, S.L., Plazek, D.J., Sobieski, J.W., McGregor, E.T.: Physical aging of a polyetherimide: Volume recovery and its comparison to creep and enthalpy measurements. J. Polym. Sci. Part B Polym. Phys. 35, 929 (1997)ADSCrossRefGoogle Scholar
  92. 92.
    Simon, S.L., Sobieski, J.W., Plazek, D.J.: Volume and enthalpy recovery of polystyrene. Polymer 42, 2555 (2001)CrossRefGoogle Scholar
  93. 93.
    Alcoutlabi, M., Briatico-Vangosa, F., McKenna, G.B.: Effect of chemical activity jumps on the viscoelastic behavior of an epoxy resin: Physical aging response in carbon dioxide pressure jumps. J. Polym. Sci. Part B Polym. Phys. 40, 2050 (2002)ADSCrossRefzbMATHGoogle Scholar
  94. 94.
    Meng, Y., Simon, S.L.: Pressure relaxation of polystyrene and its comparison to the shear response. J. Polym. Sci. Part B Polym. Phys. 45, 3375 (2007)ADSCrossRefGoogle Scholar
  95. 95.
    Zheng, Y., Priestley, R.D., McKenna, G.B.: Physical aging of an epoxy subsequent to relative humidity jumps through the glass concentration. J. Polym. Sci. Part B Polym. Phys. 42, 2107 (2004)ADSCrossRefGoogle Scholar
  96. 96.
    Moynihan, C.T., Macedo, P.B., Montrose, C.J., Gupta, P.K., Debolt, M.A., Dill, J.F., Dom, B.E., Drake, P.W., Easteal, A.J., Elterman, P.B., Moeller, R.P., Sasabe, H., Wilder, J.A.: Structural relaxation in vitreous materials. Ann. N. Y. Acad. Sci. 279, 15 (1976)ADSCrossRefGoogle Scholar
  97. 97.
    Narayanaswamy, O.S.: Model of structural relaxation in glass. J. Am. Ceram. Soc. 54, 491 (1971)CrossRefGoogle Scholar
  98. 98.
    Tool, A.Q.: Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29, 240 (1946)CrossRefGoogle Scholar
  99. 99.
    Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., Ramos, A.R.: Isobaric volume and enthalpy recovery of glasses. 2. A transparent multiparameter theory. J. Polym. Sci. Polym. Phys. Ed. 17, 1097 (1979)ADSCrossRefGoogle Scholar
  100. 100.
    Ramos, A.R., Hutchinson, J.M., Kovacs, A.J.: Isobaric thermal behavior of glasses during uniform cooling and heating. 3. Predictions from the multiparameter kahr model. J. Polym. Sci. Polym. Phys. Ed. 22, 1655 (1984)ADSCrossRefzbMATHGoogle Scholar
  101. 101.
    Robertson, R.E.: Effect of free volume fluctuations on polymer relaxation in the glass state 2. Calculated results. J. Polym. Sci. Polym. Phys. Ed. 17, 597 (1979)ADSCrossRefGoogle Scholar
  102. 102.
    Robertson, R.E.: Free-volume theory and its application to polymer relaxation in the glass state. In: Bicerano, J. (ed.) Computational modeling of polymers. Marcel Dekker Inc, New York (1992)Google Scholar
  103. 103.
    Moynihan, C.T., Crichtion, S.N., Opalka, S.M.: Linear and non-linear structural relaxation. J. Non-Cryst. Solids 131, 420 (1991)ADSCrossRefGoogle Scholar
  104. 104.
    Ngai, K.L.: Short-time and long-time relaxation dynamics of glass-forming substances: A coupling model perspective. J. Phys. Condens. Matter 12, 6437 (2000)ADSCrossRefGoogle Scholar
  105. 105.
    Ngai, K.L.: An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors. J. Phys. Condens. Matter 15, S1107 (2003)ADSCrossRefGoogle Scholar
  106. 106.
    Rendell, R.W., Ngai, K.L.: Coupling model interpretation of dielectric relaxation of poly(vinyl acetate) near tg. J. Chem. Phys. 87, 2359 (1987)ADSCrossRefGoogle Scholar
  107. 107.
    Rendell, R.W., Ngai, K.L., Fong, C.R.: Volume recovery near the glass transition temperature in poly(vinyl acetate): predictions of a coupling model. Macromolecules 20, 1070 (1987)ADSCrossRefGoogle Scholar
  108. 108.
    Robertson, R.E., Simha, R., Curro, J.G.: Free-volume and the kinetics of aging of polymer glasses. Macromolecules 17, 911 (1984)ADSCrossRefGoogle Scholar
  109. 109.
    McKenna, G.B., Simon, S.L.: Time dependent volume and enthalpy responses in polymers. In: Sun, R.A.S.A.C.T. (ed.) Time dependent and nonlinear effects in polymers and composites, astm stp 1357, p. 18. American Society for Testing and Materials: West Conshohocken, PA (2000)Google Scholar
  110. 110.
    Bradshaw, R.D.: Characterization and modeling of viscoelastic composite laminates with nonisothermal physical aging, in Mechanical Engineering. Northwestern University, Evanston (1997)Google Scholar
  111. 111.
    Struik, L.C.E.: Dependence of relaxation times of glassy polymers on their specific volume. Polymer 29, 1347 (1988)CrossRefGoogle Scholar
  112. 112.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in c: the art of scientific computing. Cambridge University Press, Cambridge (1992)Google Scholar
  113. 113.
    Cangialosi, D., Schut, H., Veen, A.V., Picken, S.J.: Positron annihilation lifetime spectroscopy for measuring free volume during physical aging of polycarbonate. Macromolecules 36, 142 (2003)ADSCrossRefGoogle Scholar
  114. 114.
    Victor, J.G., Torkelson, J.M.: Photochromic and fluorescent probe studies in glassy polymer matrices. 3. Effects of physical aging and molar weight on the size distribution of local free volume in polystyrene. Macromolecules 21, 3490 (1988)ADSCrossRefGoogle Scholar
  115. 115.
    Curro, J.G., Lagasse, R.R., Simha, R.: Diffusion model for volume recovery in glasses. Macromolecules 15, 1621 (1982)ADSCrossRefGoogle Scholar
  116. 116.
    Boucher, V.M., Cangialosi, D., Alegria, A., Colmenero, J.: Enthalpy recovery of pmma/silica nanocomposites. Macromolecules 43, 7594 (2010)ADSCrossRefGoogle Scholar
  117. 117.
    Boucher, V.M., Cangialosi, D., Alegria, A., Colmenero, J.: Enthalpy recovery in nanometer to micrometer thin ps films. Macromolecules 45, 5296 (2012)CrossRefGoogle Scholar
  118. 118.
    Boucher, V.M., Cangialosi, D., Alegria, A., Colmenero, J., Gonzalez-Irun, J., Liz-Marzan, L.M.: Accelerated physical aging in pmma/silica nanocomposites. Soft Matter 6, 3306 (2010)ADSCrossRefGoogle Scholar
  119. 119.
    Boucher, V.M., Cangialosi, D., Alegria, A., Colmenero, J.: Accounting for the thickness dependence of the tg in supported ps films via the volume holes diffusion model. Thermochim. Acta 575, 233 (2014)CrossRefGoogle Scholar
  120. 120.
    Ellison, C.J., Kim, S.D., Hall, D.B., Torkelson, J.M.: Confinement and processing effects on glass transition temperature and phsyical aging in ultrathin polymer films: Novel fluorescence measurements. Eur. Phys. J. E 8, 155 (2002)CrossRefGoogle Scholar
  121. 121.
    Royal, J.S., Torkelson, J.M.: Monitoring the molecular scale effects of physical aging in polymer glasses with fluorescence probes. Macromolecules 23, 3536 (1990)ADSCrossRefzbMATHGoogle Scholar
  122. 122.
    Koh, Y.P., McKenna, G.B., Simon, S.L.: Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J. Polym. Sci. Part B Polym. Phys. 44, 3518 (2006)ADSCrossRefGoogle Scholar
  123. 123.
    Baker, E.A., Rittigstein, P., Torkelson, J.M., Roth, C.B.: Streamlined ellipsometry procedure for characterizing physical aging rates of thin polymer films. J. Polym. Sci. Part B Polym. Phys. 47, 2509 (2009)ADSCrossRefGoogle Scholar
  124. 124.
    Frieberg, B., Glynos, E., Green, P.F.: Structural relaxation of thin polymer films. Phys. Rev. Lett. 108, 268304 (2012)ADSCrossRefGoogle Scholar
  125. 125.
    Huang, Y., Paul, D.R.: Physical aging of thin glassy polymer films monitored by optical properties. Macromolecules 39, 1554 (2006)ADSCrossRefGoogle Scholar
  126. 126.
    Huang, Y., Paul, D.R.: Effect of temperature of physical aging of thin glassy polymer films. Macromolecules 38, 10148 (2005)ADSCrossRefGoogle Scholar
  127. 127.
    Dorkenoo, K.D., Pfromm, P.H.: Experimental evidence and theoretical analysis of physical aging in thin and thick amorphous glassy polymer films. J. Polym. Sci. Part B Polym. Phys. 37, 2239 (1999)ADSCrossRefGoogle Scholar
  128. 128.
    Rowe, B.W., Freeman, B.D., Paul, D.R.: Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer 50, 5565 (2009)CrossRefGoogle Scholar
  129. 129.
    Dorkenoo, K., Pfromm, P.H.: Accelerated physical aging of thin poly[1-(trimethylsilyl)-1-propyne] films. Macromolecules 33, 3747 (2000)ADSCrossRefGoogle Scholar
  130. 130.
    Gray, L.A.G., Yoon, S.W., Pahner, W.A., Davidheiser, J.E., Roth, C.B.: Importance of quench conditions on the subsequent physical aging rate of glassy polymer films. Macromolecules 45, 1701 (2012)ADSCrossRefGoogle Scholar
  131. 131.
    Pye, J.E., Roth, C.B.: Physical aging of polymer films quenched and measured free-standing via ellipsometry: Controlling stress imparted by thermal expansion mismatch between film and support. Macromolecules 46, 9455 (2013)ADSCrossRefGoogle Scholar
  132. 132.
    Rittigstein, P., Torkelson, J.M.: Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on the glass transition temperature and suppression of physical aging. J. Polym. Sci. Part B Polym. Phys. 44, 2935 (2006)ADSCrossRefzbMATHGoogle Scholar
  133. 133.
    Priestley, R.D., Rittigstein, P., Broadbelt, L.J., Fukao, K., Torkelson, J.M.: Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: Fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites. J. Phys. Condens. Matter 19, 205120 (2007)ADSCrossRefGoogle Scholar
  134. 134.
    Murphy, T.M., Langhe, D.S., Ponting, M., Baer, E., Freeman, B.D., Paul, D.R.: Physical aging of layered glassy polymer films via permeability tracking. Polymer 52, 6117 (2011)CrossRefGoogle Scholar
  135. 135.
    Murphy, T.M., Langhe, D.S., Ponting, M., Baer, E., Freeman, B.D., Paul, D.R.: Enthalpy recovery and structural relaxation in layered glassy polymer films. Polymer 53, 4002 (2012)CrossRefGoogle Scholar
  136. 136.
    Langhe, D.S., Murphy, T.M., Shaver, A., LaPorte, C., Freeman, B.D., Paul, D.R., Baer, E.: Structural relaxation of polystyrene in nanolayer confinement. Polymer 52, 1925 (2012)CrossRefzbMATHGoogle Scholar
  137. 137.
    Rauscher, P.M., Pye, J.E., Baglay, R.R., Roth, C.B.: Effect of adjacent rubbery layers on the physical aging of glassy polymers. Macromolecules 46, 9806 (2013)ADSCrossRefGoogle Scholar
  138. 138.
    Lu, H., Nutt, S.: Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 36, 4010 (2003)ADSCrossRefGoogle Scholar
  139. 139.
    Lu, H., Nutt, S.: Enthalpy relaxation of layered silicate-epoxy nanocomposites. Macromol. Chem. Phys. 204, 1832 (2003)CrossRefGoogle Scholar
  140. 140.
    Vlasveld, D.P.N., Bersee, H.E.N., Picken, S.J.: Creep and physical aging behavior of pa6 nanocomposites. Polymer 46, 12539 (2005)CrossRefGoogle Scholar
  141. 141.
    Bian, Y., Pejanovic, S., Kenny, J., Mijovic, J.: Dynamics of multifunctional polyhedral oligomeric silsesquioxane/poly(propylene oxide) nanocomposites as studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy. Macromolecules 40 (2007)Google Scholar
  142. 142.
    Boucher, V.M., Cangialosi, D., Alegria, A., Colmenero, J.: Time dependence of the segmental relaxation time of poly(vinyl acetate)-silica nanocomposites. Phys. Rev. E 86, 041501 (2012)ADSCrossRefGoogle Scholar
  143. 143.
    Boucher, V.M., Cangialosi, D., Alegria, A., Colmenero, J., Gonzalez-Irun, J., Liz-Marzan, L.M.: Physical aging in pmma/silica nanocomposites: Enthalpy and dielectric relaxation. J. Non-crystalline Solids 35 (2011)Google Scholar
  144. 144.
    Cangialosi, D., Boucher, V.M., Alegria, A., Colmenero, J.: Enhanced physical aging of polymer nanocomposites: the key role of the area to volume ratio. Polymer 53, 1362 (2012)CrossRefGoogle Scholar
  145. 145.
    Lin, Y., Liu, L., Cheng, J., Shangguan, Y., Yu, W., Qiu, B., Zheng, Q.: Segmental dynamics and physical aging of polystyrene/silver nanocomposites. RSC Adv. 4, 20086 (2014)CrossRefGoogle Scholar
  146. 146.
    Greco, A., Esposito-Corcione, C., Cavallo, A., Maffezzoli, A.: Structural relaxation of amorphous pet matrix nanocomposites. AIP Conf. Proc. 1255, 395 (2010)ADSCrossRefGoogle Scholar
  147. 147.
    Amanuel, S., Gaudette, A.N., Sternstein, S.S.: Enthalpic relaxation of silica-polyvinyl acetate nanocomposites. J. Polym. Sci. B Polym. Phys. 46, 2733 (2008)ADSCrossRefGoogle Scholar
  148. 148.
    Flory, A.L., Ramanathan, T., Brinson, L.C.: Physical aging of single wall carbon nanotube polymer nanocomposites: effect of functionalization of the nanotube on the enthalpy relaxation. Macromolecules 43, 4247 (2010)ADSCrossRefGoogle Scholar
  149. 149.
    Liu, A.Y.H., Rottler, J.: Physical aging and structural relaxation in polymer nanocomposites. J. Polym. Sci. B Polym. Phys. 47, 1789 (2009)ADSCrossRefGoogle Scholar
  150. 150.
    Wang, K., Liang, S., Deng, J., Yang, H., Zhang, Q., Fu, Q., Dong, X., Wang, D., Han, C.C.: The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites. Polymer 47, 7131 (2006)CrossRefGoogle Scholar
  151. 151.
    Cangialosi, D., Boucher, V.M., Alegria, A., Colmenero, J.: Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter 9, 8619 (2013)ADSCrossRefGoogle Scholar
  152. 152.
    Sohn, J.-I., Lee, C.H., Lim, S.T., Kim, T.H., Choi, H.J., Jhon, M.S.: Viscoelasticity and relaxation characteristics of polystyrene/clay nanocomposites. J. Mater. Sci. 38, 1849 (2003)ADSCrossRefGoogle Scholar
  153. 153.
    Wang, Y., Chen, W.-C.: Dielectric probing of relaxation behaviors in pmma/organoclay nanocomposites: effect of organic modification, composite interfaces. Compos. Interfaces 17, 803 (2010)CrossRefGoogle Scholar
  154. 154.
    Wang, Y., Huang, S.-W.: Solution intercalation and relaxation properties of maleated polypropylene/organoclay nanocomposites. Polym Plast. Technol. Eng. 46, 1039 (2007)CrossRefGoogle Scholar
  155. 155.
    Cangialosi, D., Wubbenhorst, M., Groenewold, J., Mendes, E., Schut, H., van Veen, A., Picken, S.J.: Physical aging of polycarbonate far below the glass transition temperature: Evidence for the diffusion mechanism. Phys. Rev. B 70, 224213 (2004)ADSCrossRefGoogle Scholar
  156. 156.
    Yurekli, K., Krishnamoorti, R., Tse, M.F., McElrath, K.O., Tsou, A.H., Wang, H.-C.: Structure and dynamics of carbon black-filled elastomers. J. Polym. Sci. B Polym. Phys. 39, 256 (2001)ADSCrossRefGoogle Scholar
  157. 157.
    Chong, S.-H., Aichele, M., Meyer, H., Fuchs, M., Baschnagel, J.: Structural and conformational dynamics of supercooled polymer melts: Insights from first-principles theory and simulations. Phys. Rev. E 76, 051806 (2007)ADSCrossRefGoogle Scholar
  158. 158.
    Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S., Nguyen, S.T., Aksay, I.A., Prudhomme, R.K., Brinson, L.C.: Functionalized graphene sheets for polymer nanocomposites. Nat. Mater. 3, 327 (2008)Google Scholar
  159. 159.
    Cangialosi, D., Boucher, V.M., Alegria, A., Colmenero, J.: Volume recovery of polystyrene/silica nanocomposites. J. Polym. Sci. Part B Polym. Phys. 51, 847 (2013)ADSCrossRefGoogle Scholar
  160. 160.
    Boucher, V.M., Cangialosi, D., Alegria, A., Colmenero, J., Pastoriza-Santos, I., Liz-Marzan, L.M.: Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric t g depression. Soft Matter 7, 3607 (2011)ADSCrossRefGoogle Scholar
  161. 161.
    Tang, Q., Hu, W., Napolitano, S.: Slowing down of accelerated structural relaxation in ultrathin polymer films. Phys. Rev. Lett. 112, 148306 (2014)ADSCrossRefGoogle Scholar
  162. 162.
    Boucher, V.M., Cangialosi, D., Yin, H., Schonhals, A., Alegria, A., Colmenero, J.: Tg depression and invariant segmental dynamics in polystyrene thin films. Soft Matter 8, 5119 (2012)ADSCrossRefGoogle Scholar
  163. 163.
    Reiter, G., Napolitano, S.: Possible origin of thickness-dependent deviations from bulk properties of thin polymer films. J. Polym. Sci. B Polym. Phys. 48, 2544 (2010)ADSCrossRefGoogle Scholar
  164. 164.
    Li, L., Li, B., Chen, J., Zhou, D., Xue, G., Liu, X.: Glass transition and structural relaxation of nano-particle aggregates of atactic poly(methyl methacrylate) formed in microemulsions. Polymer 45, 2813 (2004)CrossRefGoogle Scholar
  165. 165.
    Mi, Y., Xue, G., Wang, X.: Glass transition of nano-sized single chain globules. Polymer 43, 6701 (2002)CrossRefGoogle Scholar
  166. 166.
    Sing, C.E., Einert, T.R., Netz, R.R., Alexander-Katz, A.: Probing structural and dynamics transitions in polymer globules by force. Phys. Rev. E 83, 040801 (2011)ADSCrossRefGoogle Scholar
  167. 167.
    Guo, Y., Zhang, C., Lai, C., Priestley, R.D., D’Acunzi, M., Fytas, G.: Structural relaxation of polymer nanospheres under soft and hard confinement: Isobaric versus isochoric conditions. ACS Nano 5, 5365 (2011)CrossRefGoogle Scholar
  168. 168.
    Zhang, C., Guo, Y., Priestley, R.D.: Glass transition temperature of polymer nanoparticles under soft and hard confinement. Macromolecules 44, 4001 (2011)CrossRefGoogle Scholar
  169. 169.
    Tang, Q., Hu, W.: Molecular simulation of structural relaxation in ultrathin polymer films. Phys. Chem. Chem. Phys. 15, 20679 (2013)CrossRefGoogle Scholar
  170. 170.
    McCaig, M.S., Paul, D.R., Barlow, J.W.: Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Polymer 41, 639 (2000)CrossRefGoogle Scholar
  171. 171.
    Thornton, A.W., Hill, A.J.: Vacancy diffusion with time-dependent length scale: an insightful new model for physical aging in polymers. Ind. Eng. Chem. Res. 49, 12119 (2010)CrossRefGoogle Scholar
  172. 172.
    Curgul, S., Van Vliet, K.J., Rutledge, G.C.: Molecular dynamics simulation of size-dependent structural and thermal properties of polymer nanofibers. Macromolecules 40, 8483 (2007)ADSCrossRefGoogle Scholar
  173. 173.
    Mukherji, D., Muser, M.H.: Glassy dynamics, aging in mobility, and structural relaxation of strongly adsorbed polymer films: Corrugation or confinement? Macromolecules 40, 1754 (2007)ADSCrossRefGoogle Scholar
  174. 174.
    Kim, J.H., Jang, J., Zin, W.C.: Estimation of the thickness dependence of the glass transition temperature in various thin polymer films. Langmuir 16, 4064 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of Michigan-Shanghai Jiao Tong University Joint InstituteShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  3. 3.Princeton Institute for the Science and Technology of MaterialsPrinceton UniversityPrincetonUSA

Personalised recommendations