Effect of Confinement Geometry on Out-of-Equilibrium Glassy Dynamics

  • Daniele CangialosiEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


Glassy dynamics under nanoscale confinement have been subject of under intense debate in soft matter physics in the last 20 years. Scientific impetus in the field was provided by the increasing employment of glasses confined at the nanoscale. Furthermore, investigation of confined glasses may deliver information of the still unsolved problem of the glass transition. Within this context, the present chapter critically discusses the experimental findings in the field. Special attention is devoted to literature dealing with polymers under 1-D confinement, that is, thin polymer film. Results on different confinement geometries, such as polymer nanocomposites and nanospheres , are discussed as well. In discussing these results, we emphasize how the out-of-equilibrium dynamics , that is, the glass transition temperature (T g ) and the spontaneous evolution towards equilibrium in the so-called physical aging regime, is in numerous cases decoupled from the equilibrium dynamics, namely the rate of spontaneous fluctuations in the glass former. In particular, arguments based exclusively on the modification of the rate of spontaneous fluctuations in confinement are not able to provide a comprehensive description of the deviation of the T g and the rate of physical aging . In the search for the factors affecting the out-of-equilibrium dynamics in confinement, we show solid experimental evidence that this is mainly determined by the amount of free interface. In this sense the crucial role of irreversible chain adsorption is highlighted. Finally a framework, based on free volume holes diffusion (FVHD), to describe the entire phenomenology of glassy dynamics in confinement is reviewed. This is able to catch the enhancement of the out-of-equilibrium dynamics, that is, the T g depression and the speed-up of physical aging in confinement, with no need to invoke any acceleration of the rate of spontaneous fluctuations of the polymer.


Glass transition Linear response Out-of-equilibrium dynamics Adsorption 



The author acknowledges the University of the Basque Country and Basque Country Government (Ref. No. IT-654-13 (GV)), Depto. Educación, Universidades e investigación; and Spanish Government (Grant No. MAT2012-31088) for their financial support.


  1. 1.
    Adam, G., Gibbs, J.H.: On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43(1), 139–146 (1965)ADSCrossRefGoogle Scholar
  2. 2.
    Alfrey, T., Goldfinger, G., Mark, H.: The apparent second-order transition point of polystyrene. J. Appl. Phys. 14(12), 700–705 (1943)ADSCrossRefGoogle Scholar
  3. 3.
    Amanuel, S., Gaudette, A.N., Sternstein, S.S.: Enthalpic relaxation of silicapolyvinyl acetate nanocomposites. J. Polym. Sci. Pol. Phys. 46(24), 2733–2740 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Baeumchen, O., McGraw, J.D., Forrest, J.A., Dalnoki-Veress, K.: Reduced glass transition temperatures in thin polymer films: surface effect or artifact? Phys. Rev. Lett. 109(5), 055–701 (2012)Google Scholar
  5. 5.
    Bahar, I., Erman, B., Kremer, F., Fischer, E.: Segmental motions of cis-polyisoprene in the bulk state—interpretation of dielectric-relaxation data. Macromolecules 25(2), 816–825 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    Baker, E.A., Rittigstein, P., Torkelson, J.M., Roth, C.B.: Streamlined ellipsometry procedure for characterizing physical aging rates of thin polymer films. J. Polym. Sci. Pt. B-Polym. Phys. 47(24SI), 2509–2519 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Bansal, A., Yang, H., Li, C., Cho, K., Benicewicz, B., Kumar, S., Schadler, L.: Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat. Mater. 4(9), 693–698 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Berthier, L., Biroli, G., Bouchaud, J.P., Cipelletti, L., Masri, D.E., L’Hôte, D., Ladieu, F., Pierno, M.: Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310(5755), 1797–1800 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Bogoslovov, R.B., Roland, C.M., Ellis, A.R., Randall, A.M., Robertson, C.G.: Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules 41(4), 1289–1296 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Boucher, V.M., Cangialosi, D., Alegría, A., Colmenero, J.: Enthalpy recovery of pmma/silica nanocomposites. Macromolecules 43(18), 7594–7603 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Boucher, V.M., Cangialosi, D., Alegría, A., Colmenero, J.: Enthalpy recovery in nanometer to micrometer thick ps films. Macromolecules 45(12), 5296–5306 (2012)CrossRefGoogle Scholar
  12. 12.
    Boucher, V.M., Cangialosi, D., Alegría, A., Colmenero, J.: Time dependence of the segmental relaxation time of poly(vinyl acetate)-silica nanocomposites. Phys. Rev. E 86(4 Part 1), 041501 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Boucher, V.M., Cangialosi, D., Alegria, A., Colmenero, J.: Accounting for the thickness dependence of the {T}g in supported {PS} films via the volume holes diffusion model. Thermochim. Acta 575, 233–237 (2014)CrossRefGoogle Scholar
  14. 14.
    Boucher, V.M., Cangialosi, D., Alegría, A., Colmenero, J., Gonzalez-Irun, J., Liz-Marzan, L.M.: Accelerated physical aging in pmma/silica nanocomposites. Soft Matter 6(14), 3306–3317 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Boucher, V.M., Cangialosi, D., Alegría, A., Colmenero, J., Pastoriza-Santos, I., Liz-Marzan, L.M.: Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric t(g) depression. Soft Matter 7(7), 3607–3620 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Boucher, V.M., Cangialosi, D., Yin, H., Schoenhals, A., Alegría, A., Colmenero, J.: T-g depression and invariant segmental dynamics in polystyrene thin films. Soft Matter 8(19), 5119–5122 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Callen, H., Greene, R.: On a theorem of irreversible thermodynamics. Phys. Rev. 86(5), 702–710 (1952)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Cangialosi, D., Alegría, A., Colmenero, J.: Route to calculate the length scale for the glass transition in polymers. Phys. Rev. E 76(11), 011, 514 (2007)CrossRefGoogle Scholar
  19. 19.
    Cangialosi, D., Alegría, A., Colmenero, J.: “self-concentration” effects on the dynamics of a polychlorinated biphenyl diluted in 1,4-polybutadiene. J. Chem. Phys. 126(20), 204904 (2007)Google Scholar
  20. 20.
    Cangialosi, D., Boucher, V., Alegría, A., Colmenero, J.: Direct evidence of two equilibration mechanisms in glassy polymers. Phys. Rev. Lett. 111, 095701 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Cangialosi, D., Boucher, V.M., Alegría, A., Colmenero, J.: Free volume holes diffusion to describe physical aging in poly(mehtyl methacrylate)/silica nanocomposites. J. Chem. Phys. 135(1), 014901 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Cangialosi, D., Boucher, V.M., Alegría, A., Colmenero, J.: Enhanced physical aging of polymer nanocomposites: The key role of the area to volume ratio. Polymer 53(6), 1362–1372 (2012)CrossRefGoogle Scholar
  23. 23.
    Cangialosi, D., Boucher, V.M., Alegría, A., Colmenero, J.: Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter 9(36), 8619–8630 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Cangialosi, D., Schwartz, G., Alegria, A., Colmenero, J.: Combining configurational entropy and self-concentration to describe the component dynamics in miscible polymer blends. J. Chem. Phys. 123(14), 144908 (2005)Google Scholar
  25. 25.
    Cangialosi, D., Wubbenhorst, M., Groenewold, J., Mendes, E., Picken, S.: Diffusion mechanism for physical aging of polycarbonate far below the glass transition temperature studied by means of dielectric spectroscopy. J. Non-Cryst. Solids 351(33–36), 2605–2610 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Cangialosi, D., Wübbenhorst, M., Groenewold, J., Mendes, E., Schut, H., van Veen, A., Picken, S.J.: Physical aging of polycarbonate far below the glass transition temperature: evidence for the diffusion mechanism. Phys. Rev. B 70, 224213 (2004)ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Chai, Y., Salez, T., McGraw, J.D., Benzaquen, M., Raphal, E., Forrest, J.A., Dalnoki-Veress, K.: A direct quantitative measure of surface mobility in a glassy polymer. Science 343(6174), 994–999 (2014)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Chandran, S., Basu, J.: Effect of nanoparticle dispersion on glass transition in thin films of polymer nanocomposites. Eur. Phys. J. E 34(9), 99 (2011)zbMATHCrossRefGoogle Scholar
  29. 29.
    Chandran, S., Basu, J.K., Mukhopadhyay, M.K.: Variation in glass transition temperature of polymer nanocomposite films driven by morphological transitions. J. Chem. Phys. 138(1), 014902 (2013)ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Chen, J., Li, L., Zhou, D., Xu, J., Xue, G.: Effect of molecular chain architecture on dynamics of polymer thin films measured by the ac-chip calorimeter. Macromolecules 47(10), 3497–3501 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Cho, W.K., Kong, B., Choi, I.S.: Highly efficient non-biofouling coating of zwitterionic polymers: Poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide). Langmuir 23(10), 5678–5682 (2007)CrossRefGoogle Scholar
  32. 32.
    Chowdhury, M., Freyberg, P., Ziebert, F., Yang, A.C.M., Steiner, U., Reiter, G.: Segmental Relaxations have macroscopic consequences in glassy polymer films. Phys. Rev. Lett. 109(13), 136102 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Clough, A., Peng, D., Yang, Z., Tsui, O.K.C.: Glass transition temperature of polymer films that slip. Macromolecules 44(6), 1649–1653 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Curro, J.G., Lagasse, R.R., Simha, R.: Diffusion model for volume recovery in glasses. Macromolecules 15(6), 1621–1626 (1982)ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    D’Amore, A., Caprino, G., Nicolais, L., Marino, G.: Long-term behaviour of pei and pei-based composites subjected to physical aging. Compos. Sci. Technol. 59(13), 1993–2003 (1999)CrossRefGoogle Scholar
  36. 36.
    Debenedetti, P.G.: Metastable Liquids: Concepts and Principles. Princeton University Press, Princeton (1996)Google Scholar
  37. 37.
    DeMaggio, G.B., Frieze, W.E., Gidley, D.W., Zhu, M., Hristov, H.A., Yee, A.F.: Interface and surface effects on the glass transition in thin polystyrene films. Phys. Rev. Lett. 78, 1524–1527 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Ding, J., Xue, G., Dai, Q., Cheng, R.: Glass-transition temperature of polystyrene microparticles. Polymer 34(15), 3325–3327 (1993)CrossRefGoogle Scholar
  39. 39.
    Donati, C., Douglas, J., Kob, W., Plimpton, S., Poole, P., Glotzer, S.: Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80(11), 2338–2341 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    Donth, E.: The size of cooperatively rearranging regions at the glass-transition. J. Non. Cryst. Sol. 53(3), 325–330 (1982)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    Donth, E., Korus, J., Hempel, E., Beiner, M.: Comparison of dsc heating rate and hcs frequency at the glass transition. Thermochim. Acta 305(6), 239–249 (1997)CrossRefGoogle Scholar
  42. 42.
    Dorkenoo, K.D., Pfromm, P.H.: Experimental evidence and theoretical analysis of physical aging in thin and thick amorphous glassy polymer films. J. Polym. Sci. Pt. B-Polym. Phys. 37(16), 2239–2251 (1999)ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Ediger, M.D., Forrest, J.A.: Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47(2), 471–478 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Efremov, M., Olson, E., Zhang, M., Zhang, Z., Allen, L.: Glass transition in ultrathin polymer films: calorimetric study. Phys. Rev. Lett. 91(8), 085703 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Efremov, M.Y., Olson, E.A., Zhang, M., Zhang, Z.S., Allen, L.H.: Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules 37(12), 4607–4616 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    Ellison, C.J., Torkelson, J.M.: The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2(10), 695–700 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    Evans, C.M., Torkelson, J.M.: Dramatic tunability of polystyrene tg via neighboring domains: Equivalence of multilayer films and binary blends. Abs. Pap. Am. Chem. Soc. 244, 469 (2012)Google Scholar
  48. 48.
    Fakhraai, Z., Forrest, J.A.: Probing slow dynamics in supported thin polymer films. Phys. Rev. Lett. 95(2), 025701 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    Fakhraai, Z., Forrest, J.A.: Measuring the surface dynamics of glassy polymers. Science 319(5863), 600–604 (2008)CrossRefGoogle Scholar
  50. 50.
    Feng, S., Chen, Y., Mai, B., Wei, W., Zheng, C., Wu, Q., Liang, G., Gao, H., Zhu, F.: Glass transition of poly(methyl methacrylate) nanospheres in aqueous dispersion. Phys. Chem. Chem. Phys. 16, 15941–15947 (2014)CrossRefGoogle Scholar
  51. 51.
    Feng, S., Li, Z., Liu, R., Mai, B., Wu, Q., Liang, G., Gao, H., Zhu, F.: Glass transition of polystyrene nanospheres under different confined environments in aqueous dispersions. Soft Matter 9(18), 4614–4620 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Fleer, G.J., Stuart, M.A.C., Scheutjens, J.M.H.M., Cosgrove, T., Vincent, B. (eds.): Polymers at Interfaces. Chapman and Hall, London (1993)Google Scholar
  53. 53.
    Flory, A.L., Ramanathan, T., Brinson, L.C.: Physical aging of single wall carbon nanotube polymer nanocomposites: effect of functionalization of the nanotube on the enthalpy relaxation. Macromolecules 43(9), 4247–4252 (2010)ADSzbMATHCrossRefGoogle Scholar
  54. 54.
    Forrest, J., DalnokiVeress, K., Dutcher, J.: Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys. Rev. E 56(5B), 5705–5716 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    Forrest, J.A., Dalnoki-Veress, K.: The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94(1-3SI), 167–196 (2001)CrossRefGoogle Scholar
  56. 56.
    Forrest, J.A., Dalnoki-Veress, K.: When does a glass transition temperature not signify a glass transition? ACS Macro Lett. 3(4), 310–314 (2014)CrossRefGoogle Scholar
  57. 57.
    Forrest, J.A., Dalnoki-Veress, K., Stevens, J.R., Dutcher, J.R.: Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77(10), 2002–2005 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    Frieberg, B., Glynos, E., Sakellariou, G., Green, P.F.: Physical aging of star-shaped macromolecules. ACS Macro Lett. 1(5), 636–640 (2012)CrossRefGoogle Scholar
  59. 59.
    Fryer, D., Peters, R., Kim, E., Tomaszewski, J., de Pablo, J., Nealey, P., White, C., Wu, W.: Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules 34(16), 5627–5634 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    Fukao, K., Miyamoto, Y.: Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys. Rev. E 61(2), 1743–1754 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    Fukao, K., Tahara, D.: Aging dynamics in the polymer glass of poly(2-chlorostyrene): dielectric susceptibility and volume. Phys. Rev. E 80(5), 051802 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8(6), 339–355 (1925)CrossRefGoogle Scholar
  63. 63.
    Gao, S., Koh, Y.P., Simon, S.L.: Calorimetric glass transition of single polystyrene ultrathin films. Macromolecules 46(2), 562–570 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    Gaur, U., Wunderlich, B.: Study of microphase separation in block co-polymers of styrene and alpha-methylstyrene in the glass-transition region using quantitative thermal-analysis. Macromolecules 13(6), 1618–1625 (1980)ADSCrossRefGoogle Scholar
  65. 65.
    Ge, S., Pu, Y., Zhang, W., Rafailovich, M., Sokolov, J., Buenviaje, C., Buckmaster, R., Overney, R.: Shear modulation force microscopy study of near surface glass transition temperatures. Phys. Rev. Lett. 85(11), 2340–2343 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    Gitsas, A., Floudas, G., White, R.P., Lipson, J.E.G.: Effect of pressure on the phase behavior and segmental dynamics in blends of polystyrene with poly(methylphenyl siloxane). Macromolecules 42(15), 5709–5716 (2009)Google Scholar
  67. 67.
    Glor, E.C., Fakhraai, Z.: Facilitation of interfacial dynamics in entangled polymer films. J. Chem. Phys. 141(19), 194505 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    Glynos, E., Frieberg, B., Oh, H., Liu, M., Gidley, D.W., Green, P.F.: Role of molecular architecture on the vitrification of polymer thin films. Phys. Rev. Lett. 106(12), 128301 (2011)ADSCrossRefGoogle Scholar
  69. 69.
    Grady, B.P., Paul, A., Peters, J.E., Ford, W.T.: Glass transition behavior of single-walled carbon nanotube-polystyrene composites. Macromolecules 42(16), 6152–6158 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    Grohens, Y., Brogly, M., Labbe, C., David, M.O., Schultz, J.: Glass transition of stereoregular poly(methyl methacrylate) at interfaces. Langmuir 14(11), 2929–2932 (1998)CrossRefGoogle Scholar
  71. 71.
    Guiselin, O.: Irreversible adsorption of a concentrated polymer solution. EPL (Europhysics Letters) 17(3), 225 (1992)ADSCrossRefGoogle Scholar
  72. 72.
    Guo, Y., Zhang, C., Lai, C., Priestley, R.D., D’Acunzi, M., Fytas, G.: Structural relaxation of polymer nanospheres under soft and hard confinement: isobaric versus isochoric conditions. ACS Nano 5(7), 5365–5373 (2011)CrossRefGoogle Scholar
  73. 73.
    Hartmann, L., Gorbatschow, W., Hauwede, J., Kremer, F.: Molecular dynamics in thin films of isotactic poly(methyl methacrylate). Eur. Phys. J. E 8(2), 145–154 (2002)CrossRefGoogle Scholar
  74. 74.
    Hecksher, T., Olsen, N.B., Niss, K., Dyre, J.C.: Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J. Chem. Phys. 133(17), 174514 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    Hempel, E., Hempel, G., Hensel, A., Schick, C., Donth, E.: Characteristic length of dynamic glass transition near t-g for a wide assortment of glass-forming substances. J. Phys. Chem. B 104(11), 2460–2466 (2000)CrossRefGoogle Scholar
  76. 76.
    Huang, Y., Paul, D.R.: Physical aging of thin glassy polymer films monitored by gas permeability. Polymer 45(25), 8377–8393 (2004)CrossRefGoogle Scholar
  77. 77.
    Huth, H., Minakov, A.A., Schick, C.: Differential ac-chip calorimeter for glass transition measurements in ultrathin films. J. Polym. Sci. Pt. B-Polym. Phys. 44(20), 2996–3005 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    Inoue, R., Kanaya, T., Nishida, K., Tsukushi, I., Telling, M.T.F., Gabrys, B.J., Tyagi, M., Soles, C., Wu, W.I.: Glass transition and molecular mobility in polymer thin films. Phys. Rev. E 80(3), 031802 (2009)ADSCrossRefGoogle Scholar
  79. 79.
    Kawana, S., Jones, R.A.L.: Character of the glass transition in thin supported polymer films. Phys. Rev. E 63, 021501 (2001)ADSCrossRefGoogle Scholar
  80. 80.
    Kawana, S., Jones, R.A.L.: Effect of physical ageing in thin glassy polymer films. Eur. Phys. J. E 10(3), 223–230 (2003)CrossRefGoogle Scholar
  81. 81.
    Keddie, J.L., Jones, R.A.L., Cory, R.A.: Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss. 98, 219–230 (1994)ADSCrossRefGoogle Scholar
  82. 82.
    Keddie, J.L., Jones, R.A.L., Cory, R.A.: Size-dependent depression of the glass-transition temperature in polymer-films. Europhys. Lett. 27(1), 59–64 (1994)ADSCrossRefGoogle Scholar
  83. 83.
    Kim, J.H., Jang, J., Zin, W.C.: Estimation of the thickness dependence of the glass transition temperature in various thin polymer films. Langmuir 16(9), 4064–4067 (2000)CrossRefGoogle Scholar
  84. 84.
    Koh, Y.P., McKenna, G.B., Simon, S.L.: Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J. Polym. Sci. Pt. B-Polym. Phys. 44(24), 3518–3527 (2006)ADSCrossRefGoogle Scholar
  85. 85.
    Koh, Y.P., Simon, S.L.: Structural relaxation of stacked ultrathin polystyrene films. J. Polym. Sci. Pt. B-Polym. Phys. 46(24), 2741–2753 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    Kovacs, A., Braun, G.: Glass transition in powdered polystyrene. Phys. Chem. Glas. 4(4), 152–160 (1963)CrossRefGoogle Scholar
  87. 87.
    Kovacs, A.J.: Glass transition in amorphous polymers: a phenomenological study. Fortsch. Hochpolym. Fo. 3(1/2), 394–508 (1963)Google Scholar
  88. 88.
    Kremer, F., Schonhals, A. (eds.): Broadband Dielectric Spectroscopy. Springer, Berlin (2003)Google Scholar
  89. 89.
    Kremer, F., Tress, M., Mapesa, E.U.: Glassy dynamics and glass transition in nanometric layers and films: a silver lining on the horizon. J. Non-Cryst. Solids 407, 277–283 (2015)ADSCrossRefGoogle Scholar
  90. 90.
    Kyriakos, K., Raftopoulos, K.N., Pissis, P., Kyritsis, A., Naether, F., Haeussler, L., Fischer, D., Vyalikh, A., Scheler, U., Reuter, U., Pospiech, D.: Dielectric and thermal studies of the segmental dynamics of poly(methyl methacrylate)/silica nanocomposites prepared by the solgel method. J. Appl. Pol. Sci. 128(6), 3771–3781 (2013)CrossRefGoogle Scholar
  91. 91.
    Labahn, D., Mix, R., Schoenhals, A.: Dielectric relaxation of ultrathin films of supported polysulfone. Phys. Rev. E 79(1 Part 1), 011801 (2009)ADSCrossRefGoogle Scholar
  92. 92.
    Lee, A., Lichtenhan, J.D.: Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31(15), 4970–4974 (1998)ADSzbMATHCrossRefGoogle Scholar
  93. 93.
    Lin, Y., Liu, L., Cheng, J., Shangguan, Y., Yu, W., Qiu, B., Zheng, Q.: Segmental dynamics and physical aging of polystyrene/silver nanocomposites. RSC Adv. 4, 20086–20093 (2014)zbMATHCrossRefGoogle Scholar
  94. 94.
    Lipson, J.E.G., Milner, S.T.: Percolation model of interfacial effects in polymeric glasses. Eur. Phys. J. B 72(1), 133–137 (2009)ADSCrossRefGoogle Scholar
  95. 95.
    Liu, Y., Russell, T., Samant, M., Stohr, J., Brown, H., Cossy-Favre, A., Diaz, J.: Surface relaxations in polymers. Macromolecules 30(25), 7768–7771 (1997)ADSCrossRefGoogle Scholar
  96. 96.
    Lizundia, E., Oleaga, A., Salazar, A., Sarasua, J.R.: Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites. Polymer 53(12), 2412–2421 (2012)CrossRefGoogle Scholar
  97. 97.
    Lodge, T., McLeish, T.: Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 33(14), 5278–5284 (2000)ADSCrossRefGoogle Scholar
  98. 98.
    Long, D., Lequeux, F.: Heterogeneous dynamics at the glass transition in van der waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4(3), 371–387 (2001)zbMATHCrossRefGoogle Scholar
  99. 99.
    Lu, H., Nutt, S.: Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 36(11), 4010–4016 (2003)ADSCrossRefGoogle Scholar
  100. 100.
    Lu, H.B., Nutt, S.: Enthalpy relaxation of layered silicate-epoxy nanocomposites. Macromol. Chem. Phys. 204(15), 1832–1841 (2003)CrossRefGoogle Scholar
  101. 101.
    Lubchenko, V., Wolynes, P.G.: Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 58, 235–266 (2007)ADSCrossRefGoogle Scholar
  102. 102.
    Lupascu, V., Huth, H., Schick, C., Wubbenhorst, M.: Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochim. Acta 432(2), 222–228 (2005)CrossRefGoogle Scholar
  103. 103.
    Lupascu, V., Picken, S.J., Wubbenhorst, M.: Cooperative and non-cooperative dynamics in ultra-thin films of polystyrene studied by dielectric spectroscopy and capacitive dilatometry. J. Non-Cryst. Solids 352(52–54), 5594–5600 (2006)ADSCrossRefGoogle Scholar
  104. 104.
    Mapesa, E.U., Tress, M., Schulz, G., Huth, H., Schick, C., Reiche, M., Kremer, F.: Segmental and chain dynamics in nanometric layers of poly(cis-1,4-isoprene) as studied by broadband dielectric spectroscopy and temperature-modulated calorimetry. Soft Matter 9(44), 10592–10598 (2013)ADSzbMATHCrossRefGoogle Scholar
  105. 105.
    Martinez-Tong, D.E., Soccio, M., Sanz, A., Garcia, C., Ezquerra, T.A., Nogales, A.: Chain arrangement and glass transition temperature variations in polymer nanoparticles under 3d-confinement. Macromolecules 46(11), 4698–4705 (2013)ADSzbMATHCrossRefGoogle Scholar
  106. 106.
    Martnez-Tong, D.E., Cui, J., Soccio, M., Garca, C., Ezquerra, T.A., Nogales, A.: Does the glass transition of polymers change upon 3d confinement? Macromol. Chem. Phys. 215(17), 1620–1624 (2014)Google Scholar
  107. 107.
    Martí-nez-Tong, D.E., Vanroy, B., Wübbenhorst, M., Nogales, A., Napolitano, S.: Crystallization of poly(l-lactide) confined in ultrathin films: competition between finite size effects and irreversible chain adsorption. Macromolecules 47(7), 2354–2360 (2014)ADSCrossRefGoogle Scholar
  108. 108.
    McCaig, M.S., Paul, D.R.: Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging part i. experimental observations. Polymer 41(2), 629–637 (2000)CrossRefGoogle Scholar
  109. 109.
    McCaig, M.S., Paul, D.R., Barlow, J.W.: Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging part i. experimental observations. Polymer 41(2), 639–648 (2000)zbMATHCrossRefGoogle Scholar
  110. 110.
    Mirigian, S., Schweizer, K.S.: Communication: slow relaxation, spatial mobility gradients, and vitrification in confined films. The Journal of Chemical Physics 141(16), 161103 (2014)Google Scholar
  111. 111.
    Miyazaki, T., Inoue, R., Nishida, K., Kanaya, T.: X-ray reflectivity studies on glass transition of free standing polystyrene thin films. Eur. Phys. J. Spec. Top. 141, 203–206 (2007)CrossRefGoogle Scholar
  112. 112.
    Miyazaki, T., Nishida, K., Kanaya, T.: Contraction and reexpansion of polymer thin films. Phys. Rev. E 69, 022801 (2004)ADSCrossRefGoogle Scholar
  113. 113.
    Murphy, T.M., Langhe, D.S., Ponting, M., Baer, E., Freeman, B.D., Paul, D.R.: Physical aging of layered glassy polymer films via gas permeability tracking. Polymer 52(26), 6117–6125 (2011)CrossRefGoogle Scholar
  114. 114.
    Napolitano, S., Cangialosi, D.: Macromolecules 46(19), 8051–8053 (2013)ADSzbMATHCrossRefGoogle Scholar
  115. 115.
    Napolitano, S., Capponi, S., Vanroy, B.: Glassy dynamics of soft matter under 1d confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 36(6), 61 (2013)CrossRefGoogle Scholar
  116. 116.
    Napolitano, S., Prevosto, D., Lucchesi, M., Pingue, P., D’Acunto, M., Rolla, P.: Influence of a reduced mobility layer on the structural relaxation dynamics of aluminum capped ultrathin films of poly(ethylene terephthalate). Langmuir 23(4), 2103–2109 (2007)CrossRefGoogle Scholar
  117. 117.
    Napolitano, S., Rotella, C., Wübbenhorst, M.: Can thickness and interfacial interactions univocally determine the behavior of polymers confined at the nanoscale? ACS Macro Lett 1(10), 1189–1193 (2012)CrossRefGoogle Scholar
  118. 118.
    Napolitano, S., Rotella, C., Wuebbenhorst, M.: Is the reduction in tracer diffusivity under nanoscopic confinement related to a frustrated segmental mobility? Macromol. Rapid Commun. 32(11), 844–848 (2011)zbMATHCrossRefGoogle Scholar
  119. 119.
    Napolitano, S., Wübbenhorst, M.: The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat. Commun. 2, 260 (2011)ADSCrossRefGoogle Scholar
  120. 120.
    Napolitano, S., Wuebbenhorst, M.: Structural relaxation and dynamic fragility of freely standing polymer films. Polymer 51(23), 5309–5312 (2010)zbMATHCrossRefGoogle Scholar
  121. 121.
    Noh, Y.Y., Zhao, N., Caironi, M., Sirringhaus, H.: Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotech. 2(12), 784–789 (2007)ADSzbMATHCrossRefGoogle Scholar
  122. 122.
    Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32(1), 110–113 (1928)MathSciNetADSzbMATHCrossRefGoogle Scholar
  123. 123.
    O’Connell, P., McKenna, G.: Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307(5716), 1760–1763 (2005)ADSCrossRefGoogle Scholar
  124. 124.
    Paeng, K., Richert, R., Ediger, M.D.: Molecular mobility in supported thin films of polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) probed by dye reorientation. Soft Matter 8, 819–826 (2012)ADSCrossRefGoogle Scholar
  125. 125.
    Paeng, K., Swallen, S.F., Ediger, M.D.: Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133(22), 8444–8447 (2011)CrossRefGoogle Scholar
  126. 126.
    Park, C.H., Kim, J.H., Ree, M., Sohn, B.H., Jung, J.C., Zin, W.C.: Thickness and composition dependence of the glass transition temperature in thin random copolymer films. Polymer 45(13), 4507–4513 (2004)CrossRefGoogle Scholar
  127. 127.
    Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49(15), 3187–3204 (2008)CrossRefGoogle Scholar
  128. 128.
    Perez, J.: Defect diffusion model for volume and enthalpy recovery in amorphous polymers. Polymer 29(3), 483–489 (1988)Google Scholar
  129. 129.
    Perez, J.: Physics and mechanics of amorphous polymers. A.A. Balkema, Rotterdam (1998)zbMATHGoogle Scholar
  130. 130.
    Perlich, J., Koerstgens, V., Metwalli, E., Schulz, L., Georgii, R., Mueller-Buschbaum, P.: Solvent content in thin spin-coated polystyrene homopolymer films. Macromolecules 42(1), 337–344 (2009)ADSCrossRefGoogle Scholar
  131. 131.
    Pfromm, P.H., Koros, W.J.: Accelerated physical aging of thin glassy polymer-films—evidence from gas-transport measurements. Polymer 36(12), 2379–2387 (1995)CrossRefGoogle Scholar
  132. 132.
    Pfromm, P.H., Koros, W.J.: Accelerated physical aging of thin glassy polymer-films - evidence from gas-transport measurements. Polymer 36(12), 2379–2387 (1995)zbMATHCrossRefGoogle Scholar
  133. 133.
    Priestley, R.D.: Physical aging of confined glasses. Soft Matter 5(5), 919–926 (2009)ADSCrossRefGoogle Scholar
  134. 134.
    Priestley, R.D., Broadbelt, L.J., Torkelson, J.M.: Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: effects of attractive vs neutral polymer-substrate interactions measured by fluorescence. Macromolecules 38(3), 654–657 (2005)ADSCrossRefGoogle Scholar
  135. 135.
    Priestley, R.D., Broadbelt, L.J., Torkelson, J.M., Fukao, K.: Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene. Phys. Rev. E 75(6, 1), 061806 (2007)ADSzbMATHCrossRefGoogle Scholar
  136. 136.
    Priestley, R.D., Cangialosi, D., Napolitano, S.: On the equivalence between the thermodynamic and dynamic measurements of the glass transition in confined polymers. J. Non-Cryst. Solids 407, 288–295 (2015)ADSCrossRefGoogle Scholar
  137. 137.
    Priestley, R.D., Ellison, C.J., Broadbelt, L.J., Torkelson, J.M.: Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science 309(5733), 456–459 (2005)ADSCrossRefGoogle Scholar
  138. 138.
    Priestley, R.D., Rittigstein, P., Broadbelt, L.J., Fukao, K., Torkelson, J.M.: Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites. J. Phys. Condens. Matt. 19(20), 2996–3005 (2007)zbMATHCrossRefGoogle Scholar
  139. 139.
    Pryamitsyn, V., Ganesan, V.: A comparison of the dynamical relaxations in a model for glass transition in polymer nanocomposites and polymer thin films. Macromolecules 43(13), 5851–5862 (2010)ADSCrossRefGoogle Scholar
  140. 140.
    Pye, J.E., Rohald, K.A., Baker, E.A., Roth, C.B.: Physical aging in ultrathin polystyrene films: evidence of a gradient in dynamics at the free surface and its connection to the glass transition temperature reductions. Macromolecules 43(19), 8296–8303 (2010)CrossRefGoogle Scholar
  141. 141.
    Pye, J.E., Roth, C.B.: Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys. Rev. Lett. 107(23), 235701 (2011)ADSzbMATHCrossRefGoogle Scholar
  142. 142.
    Pye, J.E., Roth, C.B.: Physical aging of polymer films quenched and measured free-standing via ellipsometry: controlling stress imparted by thermal expansion mismatch between film and support. Macromolecules 46(23), 9455–9463 (2013)ADSCrossRefGoogle Scholar
  143. 143.
    Rauscher, P.M., Pye, J.E., Baglay, R.R., Roth, C.B.: Effect of adjacent rubbery layers on the physical aging of glassy polymers. Macromolecules 46(24), 9896–9817 (2013)Google Scholar
  144. 144.
    Reiter, G., Napolitano, S.: Possible origin of thickness-dependent deviations from bulk properties of thin polymer films. J. Polym. Sci. Part B Polym. Phys. 48(24), 2544–2547 (2010)ADSzbMATHCrossRefGoogle Scholar
  145. 145.
    Rittigstein, P., Priestley, R.D., Broadbelt, L.J., Torkelson, J.M.: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6(4), 278–282 (2007)ADSzbMATHCrossRefGoogle Scholar
  146. 146.
    Rittigstein, P., Torkelson, J.M.: Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. Pol. Phys. 44(20), 2935–2943 (2006)ADSCrossRefGoogle Scholar
  147. 147.
    Rotella, C., Wubbenhorst, M., Napolitano, S.: Probing interfacial mobility profiles via the impact of nanoscopic confinement on the strength of the dynamic glass transition. Soft Matter 7(11), 5260–5266 (2011)ADSCrossRefGoogle Scholar
  148. 148.
    Roth, C., Dutcher, J.: Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur. Phys. J. E 12(1), S103–S107 (2003)zbMATHCrossRefGoogle Scholar
  149. 149.
    Roth, C.B., McNerny, K.L., Jager, W.F., Torkelson, J.M.: Eliminating the enhanced mobility at the free surface of polystyrene: fluorescence studies of the glass transition temperature in thin bilayer films of immiscible polymers. Macromolecules 40(7), 2568–2574 (2007)ADSCrossRefGoogle Scholar
  150. 150.
    Rowe, B.W., Freeman, B.D., Paul, D.R.: Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer 50(23), 5565–5575 (2009)CrossRefGoogle Scholar
  151. 151.
    Rowe, B.W., Freeman, B.D., Paul, D.R.: Influence of previous history on physical aging in thin glassy polymer films as gas separation membranes. Polymer 51(16), 3784–3792 (2010)CrossRefGoogle Scholar
  152. 152.
    Rowe, B.W., Pas, S.J., Hill, A.J., Suzuki, R., Freeman, B.D., Paul, D.R.: A variable energy positron annihilation lifetime spectroscopy study of physical aging in thin glassy polymer films. Polymer 50(25), 6149–6156 (2009)CrossRefGoogle Scholar
  153. 153.
    Schawe, J.E.K.: Vitrification in a wide cooling rate range: the relations between cooling rate, relaxation time, transition width, and fragility. J. Chem. Phys. 141(18), 184905 (2014)Google Scholar
  154. 154.
    Schmelzer, J.W.P., Gutzow, I.S., Mazurin, O.V., Priven, A.I., Todorova, S.V., Petrov, B.P.: Glasses and the Glass Transition. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2011)CrossRefGoogle Scholar
  155. 155.
    See, Y., Cha, J., Chang, T., Ree, M.: Glass transition temperature of poly(tert-butyl methacrylate) langmuir-blodgett film and spin-coated film by x-ray reflectivity and ellipsometry. Langmuir 16(5), 2351–2355 (2000)CrossRefGoogle Scholar
  156. 156.
    Serghei, A., Huth, H., Schick, C., Kremer, F.: Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules 41(10), 3636–3639 (2008)ADSCrossRefGoogle Scholar
  157. 157.
    Serghei, A., Kremer, F.: Metastable states of glassy dynamics, possibly mimicking confinement-effects in thin polymer films. Macromol. Chem. Phys. 209(8), 810–817 (2008)CrossRefGoogle Scholar
  158. 158.
    Sharp, J.S., Forrest, J.A.: Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys. Rev. Lett. 91, 235701 (2003)ADSCrossRefGoogle Scholar
  159. 159.
    Simon, S.L., Park, J.Y., McKenna, G.B.: Enthalpy recovery of a glass-forming liquid constrained in a nanoporous matrix: negative pressure effects. Eur. Phys. J. E 8, 209–216 (2002)Google Scholar
  160. 160.
    Singh, L., Ludovice, P.J., Henderson, C.L.: Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid Films 449(12), 231–241 (2004)ADSCrossRefGoogle Scholar
  161. 161.
    Soles, C., Douglas, J., Wu, W., Peng, H., Gidley, D.: Comparative specular x-ray reflectivity, positron annihilation lifetime spectroscopy, and incoherent neutron scattering measurements of the dynamics in thin polycarbonate films. Macromolecules 37(8), 2890–2900 (2004)ADSCrossRefGoogle Scholar
  162. 162.
    Struik, L.C.E.: Physical aging in amorphous polymers and other materials. Technische Hogeschool Delft. (1977)Google Scholar
  163. 163.
    Struik, L.C.E.: Physical Aging in Amorphous Glassy Polymers and Other Materials, 1st edn. Elsevier Science, Amsterdam (1978)Google Scholar
  164. 164.
    Sulym, I., Klonos, P., Borysenko, M., Pissis, P., Gun’ko, V.M.: Dielectric and thermal studies of segmental dynamics in silica/pdms and silica/titania/pdms nanocomposites. J. Appl. Pol. Sci. 131(23), 41154 (2014)CrossRefGoogle Scholar
  165. 165.
    Svanberg, C.: Glass transition relaxations in thin suspended polymer films. Macromolecules 40(2), 312–315 (2007)ADSCrossRefGoogle Scholar
  166. 166.
    Tammann, G., Hesse, W.: The dependancy of viscosity on temperature in hypothermic liquids. Z. Anorg. Allg. Chem. 156, 245–257 (1926)CrossRefGoogle Scholar
  167. 167.
    Tanaka, Y., Yamamoto, T.: Enthalpy relaxation of comb-like polymer analysed by combining activation energy spectrum and tnm models. J. Non-Cryst. Solids 358(14), 1687–1698 (2012)ADSCrossRefGoogle Scholar
  168. 168.
    Thomas, K.R., Chenneviere, A., Reiter, G., Steiner, U.: Nonequilibrium behavior of thin polymer films. Phys. Rev. E 83, 021804 (2011)ADSCrossRefGoogle Scholar
  169. 169.
    Thornton, A.W., Hill, A.J.: Vacancy diffusion with time-dependent length scale: An insightful new model for physical aging in polymers. Ind. Eng. Chem. Res. 49(23), 12119–12124 (2010)CrossRefGoogle Scholar
  170. 170.
    Thornton, A.W., Hill, A.J.: Vacancy diffusion with time-dependent length scale: An insightful new model for physical aging in polymers. Ind. Eng. Chem. Res. 49(23), 12119–12124 (2010)CrossRefGoogle Scholar
  171. 171.
    Thornton, A.W., Nairn, K.M., Hill, A.J., Hill, J.M., Huang, Y.: New relation between diffusion and free volume: Ii. predicting vacancy diffusion. J. Membr. Sci. 338(1–2), 38–42 (2009)zbMATHCrossRefGoogle Scholar
  172. 172.
    Thurau, C.T., Ediger, M.D.: Change in the temperature dependence of segmental dynamics in deeply supercooled polycarbonate. J. Chem. Phys. 118(4), 1996–2004 (2003)ADSCrossRefGoogle Scholar
  173. 173.
    Torres, J.A., Nealey, P.F., de Pablo, J.J.: Molecular simulation of ultrathin polymeric films near the glass transition. Phys. Rev. Lett. 85(15), 3221–3224 (2000)ADSCrossRefGoogle Scholar
  174. 174.
    Tress, M., Erber, M., Mapesa, E.U., Huth, H., Mueller, J., Serghei, A., Schick, C., Eichhorn, K.J., Volt, B., Kremer, F.: Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43(23), 9937–9944 (2010)ADSCrossRefGoogle Scholar
  175. 175.
    Tress, M., Mapesa, E.U., Kossack, W., Kipnusu, W.K., Reiche, M., Kremer, F.: Glassy dynamics in condensed isolated polymer chains. Science 341(6152), 1371–1374 (2013)ADSCrossRefGoogle Scholar
  176. 176.
    Tsui, O., Russell, T., Hawker, C.: Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules 34(16), 5535–5539 (2001)ADSCrossRefGoogle Scholar
  177. 177.
    Vignaud, G.S., Chebil, M., Bal, J.K., Delorme, N., Beuvier, T., Grohens, Y., Gibaud, A.: Densification and depression in glass transition temperature in polystyrene thin films. Langmuir 30(39), 11599–11608 (2014)CrossRefGoogle Scholar
  178. 178.
    Vogel, H.: The temperature dependence law of the viscosity of fluids. Phys. Z. 22, 645–646 (1921)Google Scholar
  179. 179.
    Wallace, W., Vanzanten, J., Wu, W.: Influence of an impenetrable interface on a polymer glass-transition temperature. Phys. Rev. E 52(4), 3329–3332 (1995)ADSzbMATHCrossRefGoogle Scholar
  180. 180.
    Wang, L., Velikov, V., Angell, C.: Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J. Chem. Phys. 117(22), 10184–11019 (2002)ADSCrossRefGoogle Scholar
  181. 181.
    Wang, X., Zhou, W.: Glass transition of microtome-sliced thin films. Macromolecules 35(18), 6747–6750 (2002)ADSCrossRefGoogle Scholar
  182. 182.
    White, R.P., Lipson, J.E.G.: Thermodynamic treatment of polymer thin-film glasses. Phs. Rev. E 84(4,1), 041801 (2011)ADSCrossRefGoogle Scholar
  183. 183.
    Wong, M., Tsuji, R., Nutt, S., Sue, H.J.: Glass transition temperature changes of melt-blended polymer nanocomposites containing finely dispersed zno quantum dots. Soft Matter 6, 4482–4490 (2010)ADSCrossRefGoogle Scholar
  184. 184.
    Xia, W., Mishra, S., Keten, S.: Substrate vs. free surface: competing effects on the glass transition of polymer thin films. Polymer 54(21), 5942–5951 (2013)CrossRefGoogle Scholar
  185. 185.
    Xu, J., Ding, L., Chen, J., Gao, S., Li, L., Zhou, D., Li, X., Xue, G.: Sensitive characterization of the influence of substrate interfaces on supported thin films. Macromolecules 47(18), 6365–6372 (2014)ADSCrossRefGoogle Scholar
  186. 186.
    Yang, X.N., Loos, J., Veenstra, S.C., Verhees, W.J.H., Wienk, M.M., Kroon, J.M., Michels, M.A.J., Janssen, R.A.J.: Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5(4), 579–583 (2005)ADSzbMATHCrossRefGoogle Scholar
  187. 187.
    Yave, W., Car, A., Wind, J., Peinemann, K.V.: Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. Nanotechnology 21, 395301 (2010)Google Scholar
  188. 188.
    Yin, H., Cangialosi, D., Schoenhals, A.: Glass transition and segmental dynamics in thin supported polystyrene films: the role of molecular weight and annealing. Thermochim. Acta 566, 186–192 (2013)CrossRefGoogle Scholar
  189. 189.
    Yin, H., Napolitano, S., Schoenhals, A.: Molecular mobility and glass transition of thin films of poly(bisphenol a carbonate). Macromolecules 45(3), 1652–1662 (2012)ADSzbMATHCrossRefGoogle Scholar
  190. 190.
    Yin, H., Napolitano, S., Schoenhals, A.: Molecular mobility and glass transition of thin films of poly(bisphenol a carbonate). Macromolecules 45(3), 1652–1662 (2012)ADSCrossRefGoogle Scholar
  191. 191.
    Yin, H., Schoenhals, A.: Calorimetric glass transition of ultrathin poly(vinyl methyl ether) films. Polymer 54(8SI), 2067–2070 (2013)CrossRefGoogle Scholar
  192. 192.
    van Zanten, J.H., Wallace, W.E., Wu, Wl: Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films. Phys. Rev. E 53, R2053–R2056 (1996)ADSCrossRefGoogle Scholar
  193. 193.
    Zhang, C., Boucher, V.M., Cangialosi, D., Priestley, R.D.: Mobility and glass transition temperature of polymer nanospheres. Polymer 54(1), 230–235 (2013)zbMATHCrossRefGoogle Scholar
  194. 194.
    Zhang, C., Guo, Y., Priestley, R.D.: Glass transition temperature of polymer nanoparticles under soft and hard confinement. Macromolecules 44(10), 4001–4006 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centro de Física de Materiales (CSIC-UPV/EHU)San SebastiánSpain

Personalised recommendations