Advertisement

Testing Several Hypotheses

  • George A. F. Seber
Part of the Springer Series in Statistics book series (SSS)

Abstract

Let \(\boldsymbol{\theta }\) be an unknown vector parameter, let G be the hypothesis that \(\boldsymbol{\theta }\in \varOmega\), a p-dimensional vector space in \(\mathbb{R}^{n}\), and assume that \(\mathbf{y} \sim N_{n}[\boldsymbol{\theta },\sigma ^{2}\mathbf{I}_{n}]\).

References

  1. Darroch, J. N., & Silvey, S. D. (1963). On testing more than one hypothesis. Annals of Mathematical Statistics, 34, 555–567.zbMATHMathSciNetCrossRefGoogle Scholar
  2. Davis, P. (1975). Interpolation and approximation. New York: Wiley.zbMATHGoogle Scholar
  3. Seber, G. A. F. (1964). Orthogonality in analysis of variance. Annals of Mathematical Statistics, 35(2), 705–710.zbMATHMathSciNetCrossRefGoogle Scholar
  4. Seber, G. A. F., & Lee, A. J. (2003). Linear regression analysis (2nd ed.) New York: Wiley.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • George A. F. Seber
    • 1
  1. 1.Department of StatisticsThe University of AucklandAucklandNew Zealand

Personalised recommendations