Advertisement

Hypothesis Testing

  • George A. F. Seber
Part of the Springer Series in Statistics book series (SSS)

Abstract

Given the model \(\mathbf{y} \sim N_{n}(\boldsymbol{\theta },\sigma ^{2}\mathbf{I}_{n})\) and assumption G that \(\boldsymbol{\theta }\in \varOmega\), a p-dimensional subspace of \(\mathbb{R}^{n}\), we wish to test the linear hypothesis \(H:\boldsymbol{\theta }\in \omega\), where ω is a pq dimensional subspace of Ω.

References

  1. Scheffé, H. (1959). The analysis of variance. New York: Wiley.zbMATHGoogle Scholar
  2. Seber, G. A. F., & Lee, A. J. (2003). Linear regression analysis (2nd ed.). New York: Wiley.zbMATHCrossRefGoogle Scholar
  3. Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54, 426–482.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • George A. F. Seber
    • 1
  1. 1.Department of StatisticsThe University of AucklandAucklandNew Zealand

Personalised recommendations