Skip to main content

Development of Adiponectin Receptor C-Terminal Fragment Bioassays

  • Chapter
Inflammatory Pathways in Diabetes

Part of the book series: Progress in Inflammation Research ((PIR))

  • 919 Accesses

Abstract

The presence of adiponectin receptor C terminal fragment (AdipoR CTF) in human blood was discovered using immune-affinity mass spectroscopy techniques (Pugia et al., Clin Proteomics 5:156–162, 2009). Deficiency in diabetic patients was observed and followed up by enzyme linked immunoabsorbent assays (ELISA) with generation of a set of antibodies for AdipoR1 and R2 CTF. Additional western blot analysis identified the majority of AdipoR CTF in human, rat and rabbit blood was covalently bound to immunoglobulins (Ig-CTF) as the primary native form. Bound CTF in patient plasma was found at 95–4900 ng/mL and to be <0.2 % of all plasma IgG. Free CTF was found at 0.05–5.0 ng/mL. CTF was shown to be covalently bound to immunoglobulin and only released upon basic conditions and not simply by breaking the disulfide bonds. Mass spectroscopy peptide enrichment assays utilizing trypsin digests were unable to digest bound CTF and basic treatment was required to liberate free form. Antibodies for AdipoR1 and R2 CTF were paired in sandwich ELISA suitable for measurement Ig-CTF bound forms for clinical patient testing and free CTF forms for animal model testing. Analytical validation demonstrated <10 % between sample and <10 % within patient reproducibility. Calibration, precision, and stability were acceptable. No cross reactivity or interference was observed. Simple sample preparation was demonstrated as a benefit over mass spectroscopic peptide enrichment assays analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson NL et al (2004) Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 3:235–244

    Article  CAS  PubMed  Google Scholar 

  • Anderson NL et al (2012) Precision of heavy-light peptide ratios measured by MALDI-TOF mass spectrometry. J Proteome Res 11:1868–1878

    Article  CAS  PubMed  Google Scholar 

  • Bråkenhielm E et al (2004) Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A 101(8):2476–2481

    Article  PubMed Central  PubMed  Google Scholar 

  • Camenzind AG et al (2013) Development and evaluation of an immuno-MALDI (iMALDI) assay for angiotensin I and the diagnosis of secondary hypertension. Clin Proteomics 10:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Daimon M, Kato T et al (2003) Funagata study. Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese Population: the Funagata study. Diabetes Care 26(7):2015–2020

    Article  CAS  PubMed  Google Scholar 

  • Eyford BA, Anderson NL, Pearson TW (2009) Anti-peptide antibody screening: selection of high affinity monoclonal reagents by a refined surface plasmon resonance technique. J Immunol Methods 341:86–96

    Article  PubMed  Google Scholar 

  • Gil-Campos M, Canete RR, Gil A (2004) Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr 23:963–974

    Article  CAS  PubMed  Google Scholar 

  • Hara K et al (2006) Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 29(6):1357–1362

    Article  CAS  PubMed  Google Scholar 

  • Hug C et al (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A 101(28):10308–10313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kadowaki T et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  PubMed  Google Scholar 

  • Kadowaki T et al (2003) Impaired multimerization of human adiponectin mutants associated with diabetes. J Biol Chem 278:40352–40363

    Article  PubMed  Google Scholar 

  • Kadowaki T, Yamauchi T, Tobe K et al (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubota N, Yamauchi T, Kadowaki T et al (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277:25863–25866

    Article  CAS  PubMed  Google Scholar 

  • Lutz HU, Stammler P (1993) Preferential formation of C3b-IgG complexes in vitro and in vivo from nascent C3b and naturally occurring anti-band 3 antibodies. J Biol Chem 268:17418–17426

    CAS  PubMed  Google Scholar 

  • Ma K, Chan L et al (2002) Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem 277:34658–34661

    Article  CAS  PubMed  Google Scholar 

  • Maeda K et al (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). Biochem Biophys Res Commun 221:286–289

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Matsuzawa Y et al (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731–737

    Article  CAS  PubMed  Google Scholar 

  • Mao X et al (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 8:516–523

    Article  CAS  PubMed  Google Scholar 

  • Menzaghi C, Trischitta V, Doria A (2007) Genetic influences of adiponectin on insulin resistance, type 2 diabetes, and cardiovascular disease. Diabetes 56:1198–1209

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y et al (1996) Isolation and characterization of CBP28, a novel gelatin-binding protein purified from human plasma. J Biochem 120:803–812

    Article  CAS  PubMed  Google Scholar 

  • Ouchi N, Walsh K (2007) Adiponectin as an anti-inflammatory factor. Clin Chim Acta 380(1–2):24–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips SA et al (2003) Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes 52(3):667–674

    Article  CAS  PubMed  Google Scholar 

  • Pugia M (2012) Detection of soluble adiponectin receptor peptides and use in diagnostics and therapeutics. US Patent 8,093,017, 10 Jan 2012

    Google Scholar 

  • Pugia M, Ma R (2013) Adiponectin receptor fragments and methods of use. US Patent 8,017,573, 13 Sept 2011 and US Patent 8,377,889, 19 Feb 2013

    Google Scholar 

  • Pugia MJ et al (2009) Adiponectin receptor-1 C-terminal fragment (CTF) in plasma: putative biomarker for diabetes. Clin Proteomics 5:156–162

    Article  CAS  Google Scholar 

  • Sattar N et al (2006) Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation 114(7):623–629

    Article  CAS  PubMed  Google Scholar 

  • Scherer PE et al (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749

    Article  CAS  PubMed  Google Scholar 

  • Shapiro L, Scherer PE (1998) The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr Biol 8:335–338

    Article  CAS  PubMed  Google Scholar 

  • Sim RB, Twose TM (1981) The covalent-binding reaction of complement component C3. Biochem J 193:115–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spiegelman BM et al (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271:10697–10703

    Article  PubMed  Google Scholar 

  • Suhn A, Pangburn MK (1994) Covalent attachment of human complement C3 to IgG. J Biol Chem 269:28997–29002

    Google Scholar 

  • Szmitko PE, Teoh H, Stewart DJ et al (2007) Adiponectin and cardiovascular disease: state of the art? Am J Physiol Heart Circ Physiol 292:H1655–H1663

    Article  CAS  PubMed  Google Scholar 

  • Tsao TS et al (2002) Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J Biol Chem 277(33):29359–29362

    Article  CAS  PubMed  Google Scholar 

  • Whiteaker R et al (2007) Antibody-based enrichment of peptides on magnetic beads for massspectrometry-based quantification of serum biomarkers. Anal Biochem 362:44–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whiteaker R et al (2010) An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry based quantification of protein biomarkers. Mol Cell Proteomics 9:184–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamauchi T, Kadowaki T et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(6941):762–769

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the work done by Siemens Healthcare Diagnostic people including Mary Foltz, Jill Perry, David Brock, Qingping Jiang, Yu Hui Lin, Jim Freeman and others who helped prepare antibody, conjugates, peptides, and assay formats. We would like to acknowledge the mass spectroscopy work done by the SELDI group of Dr. Saeed A. Jortani, Department of Pathology and Laboratory Medicine, University of Louisville, School of Medicine, by the SISCAPA group of Dr. Terry W. Pearson and Dr. Matthew Pope of SISCAPA Technologies at the University of Victoria BC Canada Victoria., and by the i-MALDI group of Dr. Christoph Borchers & Dr Andrew Munk of MRM Proteomics at the University of Victoria BC Canada Victoria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pugia PhD .

Editor information

Editors and Affiliations

Supplements

Supplements

  • CTF Peptide Sequences

  • ELISA Method for IgG-CTF assay

  • ELISA Method for free CTF assay

  • Western Blot Methods

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pugia, M., Ma, R. (2015). Development of Adiponectin Receptor C-Terminal Fragment Bioassays. In: Pugia, M. (eds) Inflammatory Pathways in Diabetes. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-21927-1_3

Download citation

Publish with us

Policies and ethics