Skip to main content

Parallelizing Biochemical Stochastic Simulations: A Comparison of GPUs and Intel Xeon Phi Processors

  • Conference paper
  • First Online:
Book cover Parallel Computing Technologies (PaCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9251))

Included in the following conference series:

Abstract

Stochastic simulations of biochemical reaction networks can be computationally expensive on Central Processing Units (CPUs), especially when a large number of simulations is required to compute the system states distribution or to carry out advanced model analysis. Anyway, since all simulations are independent, parallel architectures can be exploited to reduce the overall running time. The purpose of this work is to compare the computational performance of CPUs, general-purpose Graphics Processing Units (GPUs) and Intel Xeon Phi coprocessors based on the Many Integrated Core (MIC) architecture, for the execution of Gillespie’s Stochastic Simulation Algorithm (SSA). To this aim, we consider an ad hoc implementation of SSA on GPUs, while exploiting the peculiar capability of MICs of reusing existing CPUs source code. We measure the running time needed to execute several batches of simulations, for various biochemical models of increasing size. Our results show that in all tested cases GPUs outperform the other architectures, and that reusing available code with the MICs does not represent a clever strategy to fully leverage Xeon Phi horsepower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical modelling of cell signalling pathways. Nat. Cell Biol. 8, 1195–1203 (2006)

    Article  Google Scholar 

  2. Wilkinson, D.: Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10, 122–133 (2009)

    Article  Google Scholar 

  3. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  4. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)

    Article  Google Scholar 

  5. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124, 044109 (2006)

    Article  Google Scholar 

  6. Nobile, M.S., Cazzaniga, P., Besozzi, D., Pescini, D., Mauri, G.: Reverse engineering of kinetic reaction networks by means of Cartesian Genetic Programming and Particle Swarm Optimization. In: IEEE Congress of Evolutionary Computation, pp. 1594–1601 (2013)

    Google Scholar 

  7. Tian, T., Burrage, K.: Parallel implementation of stochastic simulation of large-scale cellular processes. In: 8th International Conference on High-Performance Computing in Asia-Pacific Region, pp. 621–626 (2005)

    Google Scholar 

  8. Kent, E., Hoops, S., Mendes, P.: Condor-COPASI: high-throughput computing for biochemical networks. BMC Syst. Biol. 6, 91 (2012)

    Article  Google Scholar 

  9. Macchiarulo, L.: A massively parallel implementation of Gillespie algorithm on FPGAs. In: International Conference of the IEEE on Engineering in Medicine and Biology Society, pp. 1343–1346 (2008)

    Google Scholar 

  10. Nobile, M.S., Cazzaniga, P., Besozzi, D., Pescini, D., Mauri, G.: cuTauLeaping: A GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems. PLoS ONE 9, e91963 (2014)

    Article  Google Scholar 

  11. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: cupSODA: A CUDA-powered simulator of mass-action kinetics. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 344–357. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Nobile, M.S., Cazzaniga, P., Besozzi, D., Mauri, G.: GPU-accelerated simulations of mass-action kinetics models with cupSODA. J. Supercomput. 69, 17–24 (2014)

    Article  Google Scholar 

  13. Bernaschi, M., Bisson, M., Salvadore, F.: Multi-Kepler GPU vs. multi-Intel MIC for spin systems simulations. Comput. Phys. Commun. 185, 2495–2503 (2014)

    Article  Google Scholar 

  14. Fang, J., Varbanescu, A.L., Imbernon, B., Cecilia, J.M., Perez-Sanchez, H.: Parallel computation of non-bonded interactions in drug discovery: NVidia GPUs vs. Intel Xeon Phi. In: Proceedings of the 2nd International Work-Conference on Bioinformatics and Biomedical Engineering. pp. 579–588 (2014)

    Google Scholar 

  15. Halyo, V., LeGresley, P., Lujan, P., Karpusenko, V., Vladimirov, A.: First evaluation of the CPU, GPGPU and MIC architectures for real time particle tracking based on Hough transform at the LHC. J. Instrum. 9, P04005 (2014)

    Article  Google Scholar 

  16. Lyakh, D.I.: An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU. Comput. Phys. Commun. 189, 84–91 (2015)

    Article  Google Scholar 

  17. Shimoda, T., Suzuki, S., Ohue, M., Ishida, T., Akiyama, Y.: Protein-protein docking on hardware accelerators: comparison of GPU and MIC architectures. BMC Syst. Biol. 9, S6 (2015)

    Article  Google Scholar 

  18. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: A GPU-based multi-swarm PSO method for parameter estimation in stochastic biological systems exploiting discrete-time target series. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 74–85. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, New York (2003)

    Book  MATH  Google Scholar 

  20. Nickolls, J., Dally, W.J.: The GPU computing era. Micro IEEE 30, 56–69 (2010)

    Article  Google Scholar 

  21. Farber, R.M.: Topical perspective on massive threading and parallelism. J. Mol. Graph. Model. 30, 82–89 (2011)

    Article  Google Scholar 

  22. Harvey, M.J., Fabritiis, G.D.: A survey of computational molecular science using graphics processing units. WIREs Comput. Mol. Sci. 2, 734–742 (2012)

    Article  Google Scholar 

  23. Cavazzoni, C.: EURORA: a European architecture toward exascale. In: Proceedings of the Future HPC Systems: The Challenges of Power-Constrained Performance, 1, ACM (2012)

    Google Scholar 

  24. Komarov, I., D’Souza, R.M., Tapia, J.J.: Accelerating the Gillespie \(\tau \)-leaping method using graphics processing units. PLoS ONE 7, e37370 (2012)

    Article  Google Scholar 

  25. Fang, J., Varbanescu, A.L., Sips, H., Zhang, L., Che, Y., Xu, C.: Benchmarking Intel Xeon Phi to guide kernel design. Technical report, Delft University of Technology, Netherlands (2013)

    Google Scholar 

  26. Kraus, J., Pivanti, M., Schifano, S.F., Tripiccione, R., Zanella, M.: Benchmarking GPUswith a parallel Lattice-Boltzmann code. In: IEEE 25th International Symposium on ComputerArchitecture and High Performance Computing, pp. 160–167 (2013)

    Google Scholar 

  27. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., Martegani, E.: The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J. Bioinform. Syst. Biol. 2012 (2012)

    Google Scholar 

  28. Gunawan, R., Cao, Y., Petzold, L.R., Doyle, F.J.: Sensitivity analysis of discrete stochastic systems. Biophys. J. 88, 2530–2540 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Besozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cazzaniga, P., Ferrara, F., Nobile, M.S., Besozzi, D., Mauri, G. (2015). Parallelizing Biochemical Stochastic Simulations: A Comparison of GPUs and Intel Xeon Phi Processors. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2015. Lecture Notes in Computer Science(), vol 9251. Springer, Cham. https://doi.org/10.1007/978-3-319-21909-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21909-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21908-0

  • Online ISBN: 978-3-319-21909-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics