Skip to main content

Evolution of the Second-Order Perturbations

  • Chapter
  • First Online:
The Intrinsic Bispectrum of the Cosmic Microwave Background

Part of the book series: Springer Theses ((Springer Theses))

  • 439 Accesses

Abstract

The Boltzmann equation dictates the evolution of the matter components of the Universe in an inhomogeneous Universe, while the Einstein equation describes how the curvature is affected by the distribution of matter, energy and momentum. In this chapter, we provide a numerical treatment of the Boltzmann-Einstein system of differential equations at second order in the cosmological perturbations. We first introduce our code, SONG, which numerically solves the system for photons, massless neutrinos, baryons and cold dark matter, including the effect of perturbed recombination (Sects. 5.2 and 5.3). This is a complex task that involves solving the inherent stiffness of the differential system and devising efficient sampling techniques for the time and wavemode grids. Before even solving the differential system, one has to carefully match the initial conditions with the analyical solution of the system in the early Universe, in order to avoid exciting the decaying mode (Sect. 5.4). Once suitable initial conditions are specified deep in the radiation dominated era, the second-order system can be solved all the way to today. In practice, however, the CMB anisotropies cannot be computed in this way because of the size of the differential system. Instead, we use the line of sight (LOS) formalism to directly compute the today’s transfer functions in a numerically efficient way (Sect. 5.5). Finally, we compare the numerical results of SONG against some analytical limits known in the literature and find an excellent agreement (Sect. 5.6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to note that this property is not a consequence of the decomposition theorem, which holds only at first order, but of the fact that the second-order system shares the same linear structure with the first-order one. Mode details can be found in Sect. 3.3.2.

  2. 2.

    The CLASS code initially used Eq. 5.7 to evolve \(\varPhi \); this was changed in v1.4 after we communicated with the authors about the numerical instability. CLASS now uses the time-time equation, as SONG does.

  3. 3.

    There are obviously other ways to sample the triangular wavemode, \(k_3\). In fact, in CMBquick [45] a different technique is used where, for each \(k_1\) and \(k_2\), the \(k_3\) grid is chosen so that the angle between \({\varvec{k_1}} \) and \({\varvec{k_2}} \) is linearly sampled for a fixed number of time (16 in the latest version of CMBQuick).

  4. 4.

    The Jacobian is computed only for the purpose of accelerating the convergence of Newton’s method; it is not used in building the differentiation formulae. Therefore, reusing it does not imply a loss of precision, but just a slightly slower convergence.

  5. 5.

    The expression matches with Eq. 98 of Ma and Bertschinger [32], that is \(\,\theta =(k^2\,\tau )\,\varPsi \,\), once we realise that, at first order, \(\,\theta =i\,k_j\,v^j=i\,k\,v_{[0]}\,\).

  6. 6.

    In order to facilitate the comparison with the literature, we express \(\zeta \) in terms of the perturbation \(\mathcal {R}\) used in Pitrou et al. [45]. The two variables are unperturbatively related by \(e^{2\zeta }=1-2\mathcal {R} \), which translates to \(R=-\zeta -\zeta ^2\) up to second order. We also note that Eq. 5.67 is the same as Eq. 3.6b of Ref. [45], with \(\varPhi \leftrightarrow \varPsi \) and a multiplicative factor in the quadratic part, to account for the fact that we use the perturbative expansion \(X\approx X^{(1)} +X^{(2)} \) instead of \(X\approx X^{(1)} +\frac{1}{2}X^{(2)} \).

  7. 7.

    Note that our projection functions are related to those defined in [14] by

    figure a

    .

References

  1. Bartolo N, Matarrese S, Riotto A (2012) Non-Gaussianity in the cosmic microwave background anisotropies at recombination in the squeezed limit. J Cosmol Astropart Phys 2:017. doi:10.1088/1475-7516/2012/02/017. arXiv:1109.2043

    Google Scholar 

  2. Beneke M, Fidler C, Klingmüller K (2011) B polarization of cosmic background radiation from second-order scattering sources. J Cosmol Astropart Phys 4:008. doi:10.1088/1475-7516/2011/04/008. arXiv:1102.1524

    Google Scholar 

  3. Bernardeau F, Colombi S, Gaztañaga E, Scoccimarro R (2002) Large-scale structure of the Universe and cosmological perturbation theory. Phys Rep 367:1–248. doi:10.1016/S0370-1573(02)00135-7. arXiv:0112551

    Google Scholar 

  4. Bertschinger E (1995) COSMICS: Cosmological Initial Conditions and Microwave Anisotropy Codes. arXiv:9506070

  5. Blas D, Lesgourgues J, Tram T (2011) The cosmic linear anisotropy solving system (CLASS). Part II: Approximation schemes. J Cosmol Astropart Phys 7:034. doi:10.1088/1475-7516/2011/07/034. arXiv:1104.2933

    Google Scholar 

  6. Boubekeur L, Creminelli P, D’Amico G, Noreña J, Vernizzi F (2009) Sachs-Wolfe at second order: the CMB bispectrum on large angular cales. J Cosmol Astropart Phys 8:029. doi:10.1088/1475-7516/2009/08/029. arXiv:0906.0980

    Google Scholar 

  7. Bucher M, Moodley K, Turok N (2000) General primordial cosmic perturbation. Phys Rev D 62(8):083508. doi:10.1103/PhysRevD.62.083508. arXiv:9904231

  8. Creminelli P, Pitrou C, Vernizzi F (2011) The CMB bispectrum in the squeezed limit. J Cosmol Astropart Phys 11:025. doi:10.1088/1475-7516/2011/11/025. arXiv:1109.1822

    Google Scholar 

  9. Crittenden R, Davis RL, Steinhardt PJ (1993) Polarization of the microwave background due to primordial gravitational waves. ApJ 417:L13. doi:10.1086/187082. arXiv:9306027

    Google Scholar 

  10. Dodelson S (2003) Modern cosmology. Academic Press

    Google Scholar 

  11. Enqvist K, Sloth MS (2002) Adiabatic CMB perturbations in pre-Big-Bang string cosmology. Nucl Phys B 626:395–409. doi:10.1016/S0550-3213(02)00043-3. arXiv:0109214

    Google Scholar 

  12. Goroff MH, Grinstein B, Rey SJ, Wise MB (1986) Coupling of modes of cosmological mass density fluctuations. ApJ 311:6–14. doi:10.1086/164749

    Article  ADS  Google Scholar 

  13. Hanson D, Smith KM, Challinor A, Liguori M (2009) CMB lensing and primordial non-Gaussianity. Phys Rev D 80(8):083004. doi:10.1103/PhysRevD.80.083004. arXiv:0905.4732

  14. Hu W, White M (1997) CMB anisotropies: Total angular momentum method. Phys Rev D 56:596–615. doi:10.1103/PhysRevD.56.596. arXiv:9702170

    Google Scholar 

  15. Huang Z (2012) A cosmology forecast toolkit - CosmoLib. J Cosmol Astropart Phys 6:012. doi:10.1088/1475-7516/2012/06/012. arXiv:1201.5961

    Google Scholar 

  16. Huang Z, Vernizzi F (2013a) Cosmic microwave background bispectrum from recombination. Phys Rev Lett 110(101):303. doi:10.1103/PhysRevLett.110.101303. http://link.aps.org/doi/10.1103/PhysRevLett.110.101303

  17. Huang Z, Vernizzi F (2013b) Cosmic microwave background bispectrum from recombination. Phys Rev Lett 110(101):303. doi:10.1103/PhysRevLett.110.101303. http://link.aps.org/doi/10.1103/PhysRevLett.110.101303

  18. Jain B, Bertschinger E (1994) Second-order power spectrum and nonlinear evolution at high redshift. ApJ 431:495–505. doi:10.1086/174502. arXiv:9311070

    Google Scholar 

  19. Lesgourgues J (2011) The cosmic linear anisotropy solving system (CLASS) I: Overview, arXiv:1104.2932

  20. Lesgourgues J, Tram T (2011) The cosmic linear anisotropy solving system (CLASS) IV: efficient implementation of non-cold relics. J Cosmol Astropart Phys 9:032. doi:10.1088/1475-7516/2011/09/032. arXiv:1104.2935

    Google Scholar 

  21. Lewis A (2007) Linear effects of perturbed recombination. Phys Rev D 76(6):063001. doi:10.1103/PhysRevD.76.063001. arXiv:0707.2727

  22. Lewis A (2012) The full squeezed CMB bispectrum from inflation. J Cosmol Astropart Phys 6:023. doi:10.1088/1475-7516/2012/06/023. arXiv:1204.5018

    Google Scholar 

  23. Lewis A, Challinor A (2002) Evolution of cosmological dark matter perturbations. Phys Rev D 66(2):023531. doi:10.1103/PhysRevD.66.023531. arXiv:0203507

  24. Lewis A, Challinor A (2006) Weak gravitational lensing of the CMB. Phys Rep 429:1–65. doi:10.1016/j.physrep.2006.03.002. arXiv:0601594

    Google Scholar 

  25. Lewis A, Challinor A (2007) 21cm angular-power spectrum from the dark ages. Phys Rev D 76(8):083005. doi:10.1103/PhysRevD.76.083005. arXiv:0702600

  26. Lewis A, Challinor A, Lasenby A (2000) Efficient computation of CMB anisotropies in closed FRW models. Astrophys J 538:473–476. arXiv:9911177

  27. Lewis A, Challinor A, Hanson D (2011) The shape of the CMB lensing bispectrum. J Cosmol Astropart Phys 3:018. doi:10.1088/1475-7516/2011/03/018. arXiv:1101.2234

    Google Scholar 

  28. Linde A, Mukhanov V (1997) Non-Gaussian isocurvature perturbations from inflation. Phys Rev D 56:535. doi:10.1103/PhysRevD.56.R535. arXiv:9610219

    Google Scholar 

  29. Lyth DH, Wands D (2002) Generating the curvature perturbation without an inflaton. Phys Lett B 524:5–14. doi:10.1016/S0370-2693(01)01366-1. arXiv:0110002

    Google Scholar 

  30. Lyth DH, Wands D (2003) Conserved cosmological perturbations. Phys Rev D 68(10):103515. doi:10.1103/PhysRevD.68.103515. arXiv:0306498

  31. Lyth DH, Malik KA, Sasaki M (2005) A general proof of the conservation of the curvature perturbation. J Cosmol Astropart Phys 5:004. doi:10.1088/1475-7516/2005/05/004. arXiv:0411220

    Google Scholar 

  32. Ma C, Bertschinger E (1995) Cosmological perturbation theory in the synchronous and conformal newtonian gauges. ApJ 455:7. doi:10.1086/176550. arXiv:9506072

    Google Scholar 

  33. Makino N, Sasaki M, Suto Y (1992) Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields. Phys Rev D 46:585–602. doi:10.1103/PhysRevD.46.585

    Article  ADS  Google Scholar 

  34. Maldacena J (2003) Non-gaussian features of primordial fluctuations in single field inflationary models. J High Energy Phys 5:13. doi:10.1088/1126-6708/2003/05/013. arXiv:0210603

    Google Scholar 

  35. Malik KA, Wands D (2004) Letter to the Editor: evolution of second-order cosmological perturbations. Class Quantum Gravity 21:L65–L71. doi:10.1088/0264-9381/21/11/L01. arXiv:0307055

    Google Scholar 

  36. Matarrese S, Mollerach S, Bruni M (1998) Relativistic second-order perturbations of the Einstein-de Sitter universe. Phys Rev D 58(4):043504. doi:10.1103/PhysRevD.58.043504. arXiv:9707278

  37. Mehrem R (2011) The plane wave expansion, infinite integrals and identities involving spherical bessel functions. Appl Math Comput 217(12):5360–5365. doi:10.1016/j.amc.2010.12.004. http://www.sciencedirect.com/science/article/pii/S0096300310011914

    Google Scholar 

  38. Moroi T, Takahashi T (2001) Effects of cosmological moduli fields on cosmic microwave background. Phys Lett B 522:215–221. doi:10.1016/S0370-2693(01)01295-3. arXiv:0110096

    Google Scholar 

  39. Moroi T, Takahashi T (2002) Erratum to: “Effects of cosmological moduli fields on cosmic microwave background” (Phys Lett B 522 (2001) 215). Phys Lett B 539:303–303. doi:10.1016/S0370-2693(02)02070-1

    Google Scholar 

  40. Nitta D, Komatsu E, Bartolo N, Matarrese S, Riotto A (2009) CMB anisotropies at second order III: bispectrum from products of the first-order perturbations. J Cosmol Astropart Phys 5:14. doi:10.1088/1475-7516/2009/05/014. arXiv:0903.0894

    Google Scholar 

  41. Novosyadlyj B (2006) Perturbations of ionisation fractions at the cosmological recombination epoch. MNRAS 370:1771–1782. doi:10.1111/j.1365-2966.2006.10593.x. arXiv:0603674

    Google Scholar 

  42. Peebles PJE (1968) Recombination of the primeval plasma. ApJ 153:1. doi:10.1086/149628

    Google Scholar 

  43. Peebles PJE, Yu JT (1970) Primeval adiabatic perturbation in an expanding universe. ApJ 162:815. doi:10.1086/150713

    Article  ADS  Google Scholar 

  44. Pitrou C (2011) CMBquick: spectrum and bispectrum of cosmic microwave background (CMB). Astrophysics Source Code Library, http://www2.iap.fr/users/pitrou/cmbquick.htm. arXiv:1109.009

  45. Pitrou C, Uzan J, Bernardeau F (2010) The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations. J Cosmol Astropart Phys 7:3. doi:10.1088/1475-7516/2010/07/003. arXiv:1003.0481

    Google Scholar 

  46. Planck Collaboration (2014) Planck 2013 results. XXII. Constraints on inflation. A & A 571:A22. doi:10.1051/0004-6361/201321569. arXiv:1303.5082

  47. Seager S, Sasselov DD, Scott D (1999) A new calculation of the recombination Epoch. Astrophys J Lett 523:L1–L5. doi:10.1086/312250. arXiv:9909275

    Google Scholar 

  48. Seljak U, Zaldarriaga M (1996) A line of sight approach to cosmic microwave background anisotropies. Astrophys J 469:437–444. arXiv:9603033

  49. Senatore L, Tassev S, Zaldarriaga M (2009) Cosmological perturbations at second order and recombination perturbed. J Cosmol Astropart Phys 8:031. doi:10.1088/1475-7516/2009/08/031. arXiv:0812.3652

    Google Scholar 

  50. Serra P, Cooray A (2008) Impact of secondary non-Gaussianities on the search for primordial non-Gaussianity with CMB maps. Phys Rev D 77(10):107305. doi:10.1103/PhysRevD.77.107305. arXiv:0801.3276

  51. Shampine LF, Reichelt MW (1997) The matlab ode suite. SIAM J Sci Comput 18(1):1–22. doi:10.1137/S1064827594276424. http://dx.doi.org/10.1137/S1064827594276424

    Google Scholar 

  52. Smith KM, Zaldarriaga M (2011) Algorithms for bispectra: forecasting, optimal analysis and simulation. MNRAS 417:2–19. doi:10.1111/j.1365-2966.2010.18175.x. arXiv:0612571

    Google Scholar 

  53. Su SC, Lim EA (2014) Formulating weak lensing from the Boltzmann equation and application to lens-lens couplings. Phys Rev D 89(12):123006. doi:10.1103/PhysRevD.89.123006. arXiv:1401.5737

  54. Väliviita J, Savelainen M, Talvitie M, Kurki-Suonio H, Rusak S (2012) Constraints on Scalar and Tensor Perturbations in Phenomenological and Two-field Inflation Models: Bayesian Evidences for Primordial Isocurvature and Tensor Modes. ApJ 753:151. doi:10.1088/0004-637X/753/2/151. arXiv:1202.2852

    Google Scholar 

  55. Vernizzi F (2005) Conservation of second-order cosmological perturbations in a scalar field dominated universe. Phys Rev D 71(6):061301. doi:10.1103/PhysRevD.71.061301. arXiv:0411463

  56. Wong WY, Moss A, Scott D (2008) How well do we understand cosmological recombination? MNRAS 386:1023–1028. doi:10.1111/j.1365-2966.2008.13092.x. arXiv:0711.1357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Walter Pettinari .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pettinari, G.W. (2016). Evolution of the Second-Order Perturbations. In: The Intrinsic Bispectrum of the Cosmic Microwave Background. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-21882-3_5

Download citation

Publish with us

Policies and ethics