Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 436 Accesses

Abstract

The Einstein equations are insufficient to describe the Universe unless we complement them with a model of its content. In this chapter we shall introduce the Boltzmann formalism, a statistical treatment of the Universe matter content that naturally coexists with general relativity. Each matter component (photons, baryons, cold dark matter, dark energy and neutrinos) is described via a distribution function, while interactions are modelled as collisions. Centerstage in the formalism is the Boltzmann equation, which, together with the Einstein equations derived in the previous chapter, will allow us to consistently describe (and numerically compute) the evolution of both the metric and matter of the Universe. To do so, we first use tetrads to introduce the local inertial frame as a convenient tool to derive the collision term and to express the energetics of the system (Sect. 4.2). We then show how to expand the distribution function of the cosmic microwave background around its equilibrium form, the blackbody spectrum; we shall also treat the issue of defining a temperature at second order (Sect. 4.3). The distribution function is then used to derive the Liouville term (Sect. 4.4) and the collision term (Sect. 4.5), that is the two parts of the Boltzmann equation encoding respectively the geodesic motion of the CMB photons and their scattering with the electrons during recombination. Finally, we join the two terms to obtain a form of the Boltzmann equation which is apt for a numerical treatment (Sect. 4.6), which will be the subject of the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that some mistakes in their equations were reported and corrected by Pitrou [38] and Senatore et al. [44].

  2. 2.

    Note that Senatore et al. [44] (Sect. 4.1) and Beneke and Fidler [3] (Sect. I) use the same convention, while Pitrou [38] (Sect. 4.2.2) and Naruko et al. [34] (Sect. 2.1), instead, choose the tetrad to be orthogonal to constant time hypersurfaces, that is \({e^{\underline{0}}} \,\propto \,\text {d}\tau \). See Sect. 5.3.1 of Pitrou [38] for further details.

  3. 3.

    The expression coincides with the one in Eq. 4.4 of Ref. [44] once we convert our potentials to the “exponential” ones using Eq. 3.23, but differs from the one in Ref. [34] due to the different choice of tetrads.

  4. 4.

    The expansion is obtained by following the procedure in Sect. 3.6.2, with the difference that now we are adopting the local intertial frame and, therefore, the metric is Minkowskian. In particular, we have defined \({v^{\underline{i}}} \equiv {U^{\underline{i}}}/a\) and we have used \(U^0=(1+U^iU_i)/a\).

  5. 5.

    It should be noted that the cosmic expansion not altering the CMB spectrum is not a coincidence; in fact, the spectral distortions cannot be induced by the geodesic motion encoded in the Liouville operator, for the simple reason that a photon follows the same geodesic trajectory regardless of its energy. Therefore, we expect the spectral distortions to arise only at the level of the collision term.

  6. 6.

    This can be proven by integrating \(M_m[f_{BB}]=4\pi \int \text {d}p\,p^{2+m}\,f_{BB}\) by parts and using the fact that \(\partial f_{BB}/\partial p = -T/p\;\partial f_{BB}/\partial T\,\).

  7. 7.

    Note that Pitrou et al. [40] proposed another definition of temperature, the occupation number temperature , \(\,T_{\#}\,\), which is the temperature associated to the blackbody spectrum with the same number density as the CMB,

    $$\begin{aligned} \left( \,\frac{T_{\#}}{\overline{T}}\,\right) ^3 \;\equiv \; \frac{n}{\overline{n}} \;. \end{aligned}$$
    (4.62)

    For a more detailed discussion on temperature moments and on their relation to what is measured by CMB experiment, refer to Pitrou and Stebbins [40].

  8. 8.

    Our expression for \(\text {d}p/\text {d}\tau \) matches the one given in Eq. 4.14 by Senatore et al. [44] but is different form the one in Eq. 3.14 of Bartolo et al. [1]. The reason for this discrepancy is explained in the footnote 11 of the former paper.

  9. 9.

    Note that, with respect to what we have written in [37], we have corrected a typo in the sign of \(\dot{\omega }_i\).

  10. 10.

    It should be noted, however, that reionisation does play a role at second-order as it generates spectral distortions in the CMB [40]; we have investigated the effect of reionisation spectral distortions on the CMB spectrum both in temperature and polarisation with SONG in Ref. [42].

  11. 11.

    It is interesting to note that, even if the energy transfer is very small, \(p-p'=E_{q'}-E_q=\mathcal {O} (T\,q/m_e)\), it is still possible for a photon to scatter with a large angle, \(|{\varvec{p}} '-{\varvec{p}} |=\mathcal {O} (T)\), so that \(\frac{p'-p}{|{\varvec{p}} '-{\varvec{p}} |}=\mathcal {O} (q/m_e)\).

  12. 12.

    At zero order in the energy transfer, neither the momentum nor the direction of propagation of an electron is changed by the scattering (\({\varvec{q}} '={\varvec{q}} \)) because the electrons have a large mass compared to the energy of the incident photon. This is reflected in Eq. 4.119 by the fact that, at zero order, \(g({\varvec{q}} ')=g({\varvec{q}})\). This is not the case for the scattering photon, whose direction can change even if the momentum stays constant (see previous footnote).

  13. 13.

    It should be noted that the perturbative expansion in the energy transfer is different from the one in the metric variables. For more details on this topic, refer to the discussion in Sect. 7.2 of Pitrou [38].

  14. 14.

    The below equations slightly differ from the ones in Dodelson and Jubas [14] in that we have merged the purely second-order terms into \(c^{(2)}\) and we have implemented the corrections that were pointed out in Appendix C of Senatore et al. [44]. For an alternative splitting strategy, refer to Eq. 6 of Hu et al. [24], where the photon distribution function is left unperturbed and the integrand function is expressed in terms of 7 contributions.

  15. 15.

    The expression obtained in Ref. [1] is not correct because it assumes that the first-order distribution function only has scalar components, i.e. \(f^{(1)}_{\ell m} ({\varvec{k_1}})\propto \delta _{m0}\). This is the case only if the polar axis is chosen to coincide with the wavemode \({\varvec{k_1}} \). In a second-order expression, however, the first-order quantities are evaluated in the convolution wavevectors, \({\varvec{k_1}}\) and \({\varvec{k_2}}\); since the polar axis was already chosen to be aligned with \({\varvec{k}} \), one cannot assume \(f^{(1)}_{\ell m} ({\varvec{k_1}})\propto \delta _{m0}\); as explained in Appendix B, the angular dependence of \(f^{(1)}({\varvec{k_1}})\) is given by \(f^{(1)}_{\ell m} ({\varvec{k_1}})\propto \tilde{f}^{(1)}_{\ell 0}(k_1)\,Y_{\ell m} ({\varvec{k}})\).

  16. 16.

    Note that this notation is the same that we have adopted in Pettinari et al. [37] and in Fidler et al. [19].

References

  1. Bartolo N, Matarrese S, Riotto A (2006) Cosmic microwave background anisotropies at second order: I. J Cosmol Astro-Part Phys 6:24. doi:10.1088/1475-7516/2006/06/024. arXiv:astro-ph/0604416

    Google Scholar 

  2. Becker RH, Fan X, White RL, Strauss MA, Narayanan VK, Lupton RH, Gunn JE, Annis J, Bahcall NA, Brinkmann J, Connolly AJ, Csabai I, Czarapata PC, Doi M, Heckman TM, Hennessy GS, Ivezić Ž, Knapp GR, Lamb DQ, McKay TA, Munn JA, Nash T, Nichol R, Pier JR, Richards GT, Schneider DP, Stoughton C, Szalay AS, Thakar AR, York DG (2001) Evidence for Reionisation at \({{\rm z} {\sim } 6}\): detection of a Gunn-Peterson Trough in a z=6.28 Quasar. Astrophys J 122:2850–2857. doi:10.1086/324231. arXiv:astro-ph/0108097

    Google Scholar 

  3. Beneke M, Fidler C (2010) Boltzmann hierarchy for the cosmic microwave background at second order including photon polarization. Phys Rev D 82(6):063,509. doi:10.1103/PhysRevD.82.063509. arXiv:1003.1834

  4. Beneke M, Fidler C, Klingmüller K (2011) B polarization of cosmic background radiation from second-order scattering sources. J Cosmol Astropart Phys 4:008. doi:10.1088/1475-7516/2011/04/008. arXiv:1102.1524

    Google Scholar 

  5. Bennett CL, Banday AJ, Gorski KM, Hinshaw G, Jackson P, Keegstra P, Kogut A, Smoot GF, Wilkinson DT, Wright EL (1996) Four-year COBE DMR cosmic microwave background observations: maps and basic results. Astrophys J Lett 464:L1+. doi:10.1086/310075. arXiv:astro-ph/9601067

    Google Scholar 

  6. Bernstein J (1988) Kinetic theory in the expanding universe. Cambridge University Press, Cambridge

    Google Scholar 

  7. Bertschinger E (1996) Cosmological dynamics. In: Schaeffer R, Silk J, Spiro M, Zinn-Justin J (eds) Cosmology and large scale structure, proceedings of the “Les Houches Summer School”, p 273. arXiv:astro-ph/9503125

  8. Bond JR, Efstathiou G (1984) Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. ApJ 285:L45–L48. doi:10.1086/184362

    Google Scholar 

  9. Carroll SM (2004) Spacetime and geometry. An introduction to general relativity. Addison Wesley

    Google Scholar 

  10. Challinor A, Peiris H (2009) Lecture notes on the physics of cosmic microwave background anisotropies. In: Novello M, Perez S (eds) American institute of physics conference series, vol 1132, pp 86–140. doi:10.1063/1.3151849. arXiv:0903.5158

  11. Chandrasekhar S (1992) The mathematical theory of black holes. Oxford University Press, Oxford

    Google Scholar 

  12. Creminelli P, Zaldarriaga M (2004) CMB 3-point functions generated by nonlinearities at recombination. Phys Rev D 70(8):083532. doi:10.1103/PhysRevD.70.083532. arXiv:astro-ph/0405428

  13. Dodelson S (2003) Modern cosmology. Academic Press

    Google Scholar 

  14. Dodelson S, Jubas JM (1995) Reionisation and its imprint of the cosmic microwave background. ApJ 439:503–516. doi:10.1086/175191. arXiv:astro-ph/9308019

    Google Scholar 

  15. Ehlers J (1971) General relativity and kinetic theory. In: Sachs RK (ed) General relativity and cosmology, pp 1–70

    Google Scholar 

  16. Ehlers J (1974) Kinetic theory of gases in general relativity theory. In: Ehlers J, Ford J, George C, Miller R, Montroll E, Schieve WC, Turner JS (eds) Lectures in statistical physics, vol 28, pp 78–105. Springer, Berlin. doi:10.1007/BFb0008854

  17. Ellis GFR, Matravers DR, Treciokas R (1983) An exact anisotropic solution of the Einstein-Liouville equations. General Relativ Gravit 15:931–944. doi:10.1007/BF00759230

    Google Scholar 

  18. Fan X, Narayanan VK, Strauss MA, White RL, Becker RH, Pentericci L, Rix HW (2002) Evolution of the ionizing background and the epoch of reionisation from the spectra of \( z^{\sim } 6\) quasars. AJ 123:1247–1257. doi:10.1086/339030. arXiv:astro-ph/0111184

    Google Scholar 

  19. Fidler C, Pettinari GW, Beneke M, Crittenden R, Koyama K, Wands D (2014) The intrinsic B-mode polarisation of the cosmic microwave background. J Cosmol Astropart Phys 7:011. doi:10.1088/1475-7516/2014/07/011. arXiv:1401.3296

    Google Scholar 

  20. Hawking SW (1966) Perturbations of an expanding universe. ApJ 145:544. doi:10.1086/148793

    Google Scholar 

  21. Hu W, Cooray A (2001) Gravitational time delay effects on cosmic microwave background anisotropies. Phys Rev D 63(2):023504. doi:10.1103/PhysRevD.63.023504. arXiv:astro-ph/0008001

  22. Hu W, White M (1997a) A CMB polarization primer. New A 2:323–344. doi:10.1016/S1384-1076(97)00022-5. arXiv:astro-ph/9706147

    Google Scholar 

  23. Hu W, White M (1997b) CMB anisotropies: total angular momentum method. Phys Rev D 56:596–615. doi:10.1103/PhysRevD.56.596. arXiv:astro-ph/9702170

    Google Scholar 

  24. Hu W, Scott D, Silk J (1994) Reionisation and cosmic microwave background distortions: a complete treatment of second-order Compton scattering. Phys Rev D 49:648–670. doi:10.1103/PhysRevD.49.648. arXiv:astro-ph/9305038

    Google Scholar 

  25. Huang Z, Vernizzi F (2013) Cosmic microwave background bispectrum from recombination. Phys Rev Lett 110(101):303. doi:10.1103/PhysRevLett.110.101303

  26. Kaiser N (1983) Small-angle anisotropy of the microwave background radiation in the adiabatic theory. MNRAS 202:1169–1180

    Article  ADS  Google Scholar 

  27. Kamionkowski M, Kosowsky A, Stebbins A (1997) A probe of primordial gravity waves and vorticity. Phys Rev Lett 78:2058–2061. doi:10.1103/PhysRevLett.78.2058. arXiv:astro-ph/9609132

    Google Scholar 

  28. Klein O, Nishina Y (1929) Uber die streuung von strahlung durch freie elektronen nach der neuen relativistischen quantendynamik von dirac. Zeitschrift für Physik 52(11–12):853–868. doi:10.1007/BF01366453

    Google Scholar 

  29. Kovac JM, Leitch EM, Pryke C, Carlstrom JE, Halverson NW, Holzapfel WL (2002) Detection of polarization in the cosmic microwave background using DASI. Nature 420:772–787. doi:10.1038/nature01269. arXiv:astro-ph/0209478

    Google Scholar 

  30. Lewis A, Challinor A (2002) Evolution of cosmological dark matter perturbations. Phys Rev D 66(2):023531. doi:10.1103/PhysRevD.66.023531. arXiv:astro-ph/0203507

  31. Lewis A, Challinor A (2006) Weak gravitational lensing of the CMB. Phys Rep 429:1–65. doi:10.1016/j.physrep.2006.03.002. arXiv:astro-ph/0601594

    Google Scholar 

  32. Lindquist RW (1966) Relativistic transport theory. Ann Phys 37:487–518. doi:10.1016/0003-4916(66)90207-7

    Google Scholar 

  33. Ma C, Bertschinger E (1995) Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. ApJ 455:7. doi:10.1086/176550. arXiv:astro-ph/9506072

    Google Scholar 

  34. Naruko A, Pitrou C, Koyama K, Sasaki M (2013) Second-order Boltzmann equation: gauge dependence and gauge invariance. Class Quant Grav 30(16):165008. doi:10.1088/0264-9381/30/16/165008. arXiv:1304.6929

    Google Scholar 

  35. Nitta D, Komatsu E, Bartolo N, Matarrese S, Riotto A (2009) CMB anisotropies at second order III: bispectrum from products of the first-order perturbations. J Cosmol Astropart Phys 5:14. doi:10.1088/1475-7516/2009/05/014. arXiv:0903.0894

    Google Scholar 

  36. Peebles PJE, Yu JT (1970) Primeval adiabatic perturbation in an expanding universe. ApJ 162:815. doi:10.1086/150713

    Google Scholar 

  37. Pettinari GW, Fidler C, Crittenden R, Koyama K, Wands D (2013) The intrinsic bispectrum of the cosmic microwave background. J Cosmol Astropart Phys 4:003. doi:10.1088/1475-7516/2013/04/003. arXiv:1302.0832

    Google Scholar 

  38. Pitrou C (2009a) The radiative transfer at second order: a full treatment of the Boltzmann equation with polarization. Class Quant Grav 26(6):065,006. doi:10.1088/0264-9381/26/6/065006. arXiv:0809.3036

    Google Scholar 

  39. Pitrou C (2009b) The radiative transfer for polarized radiation at second order in cosmological perturbations. General Relativ Grav 41:2587–2595. doi:10.1007/s10714-009-0782-1. arXiv:0809.3245

    Google Scholar 

  40. Pitrou C, Bernardeau F, Uzan JP (2010) The y-sky: diffuse spectral distortions of the cosmic microwave background. J Cosmol Astropart Phys 7:019. doi:10.1088/1475-7516/2010/07/019. arXiv:0912.3655

    Google Scholar 

  41. Pitrou C, Uzan J, Bernardeau F (2010) The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations. J Cosmol Astropart Phys 7:3. doi:10.1088/1475-7516/2010/07/003. arXiv:1003.0481

    Google Scholar 

  42. Renaux-Petel S, Fidler C, Pitrou C, Pettinari GW (2014) Spectral distortions in the cosmic microwave background polarization. J Cosmol Astropart Phys 3:033. doi:10.1088/1475-7516/2014/03/033. arXiv:1312.4448

    Google Scholar 

  43. Seljak U, Zaldarriaga M (1997) Signature of gravity waves in the polarization of the microwave background. Phys Rev Lett 78:2054–2057. doi:10.1103/PhysRevLett.78.2054. arXiv:astro-ph/9609169

    Google Scholar 

  44. Senatore L, Tassev S, Zaldarriaga M (2009) Cosmological perturbations at second order and recombination perturbed. J.Cosmol Astropart Phys 8:031. doi:10.1088/1475-7516/2009/08/031. arXiv:0812.3652

    Google Scholar 

  45. Zaldarriaga M, Seljak U (1998) Gravitational lensing effect on cosmic microwave background polarization. Phys Rev D 58(023):003. doi:10.1103/PhysRevD.58.023003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Walter Pettinari .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pettinari, G.W. (2016). The Boltzmann Equation. In: The Intrinsic Bispectrum of the Cosmic Microwave Background. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-21882-3_4

Download citation

Publish with us

Policies and ethics