Skip to main content

Optimising the Anatomical Coverage Provided by Military Body Armour Systems

  • Chapter
  • First Online:
Book cover Blast Injury Science and Engineering

Abstract

Body armour is a type of protective equipment worn by military personnel that aims to prevent or reduce injury from ballistic projectiles (secondary blast effects) to structures within the thorax and abdomen [1]. Such injuries remain the leading cause of potentially survivable deaths on the modern battlefield [2, 3]. Arresting bleeding from projectiles penetrating the thoracic cavity is difficult as it is not amenable to compression by applying direct pressure [2]. Although modern haemostatic dressings and the early use of blood products can potentially delay time to death or significant complications [4] the only way of definitively stopping ongoing intra-thoracic bleeding is surgery [5]. However; not every soldier sustaining a chest wound dies from it, demonstrating the variable vulnerability of the structures within the thorax and abdomen. In addition there is also an increasing recognition that prevention of those injuries causing significant long term morbidity is also required, as demonstrated by the recent addition of pelvic and eye protection [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breeze J, Fryer R, Lewis E, Mahoney P, Clasper J. Defining the medical requirement for body armour plates against high velocity bullets. J R Army Med Corps. 2015. doi:10.1136/jramc-2015-000431.

    Google Scholar 

  2. Morrison JJ, Stannard A, Rasmussen TE, Jansen JO, Tai NR, Midwinter MJ. Injury pattern and mortality of noncompressible torso hemorrhage in UK combat casualties. J Trauma Acute Care Surg. 2013;75(2 Suppl 2):S263–8.

    Article  PubMed  Google Scholar 

  3. Singleton JA, Gibb IE, Hunt NC, Bull AM, Clasper JC. Identifying future ‘unexpected’ survivors: a retrospective cohort study of fatal injury patterns in victims of improvised explosive devices. BMJ Open. 2013;3(8):e003130.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hodgetts TJ, Mahoney PF, Kirkman E. Damage control resuscitation. J R Army Med Corps. 2007;153(4):299–300.

    Article  CAS  PubMed  Google Scholar 

  5. Parker PJ. Damage control surgery and casualty evacuation: techniques for surgeons, lessons for military medical planners. J R Army Med Corps. 2006;152(4):202–11.

    Article  PubMed  Google Scholar 

  6. Breeze J, Allanson-Bailey L, Hepper A, Midwinter MJ, Lewis EA. Demonstrating the effectiveness of body Armour: a pilot prospective computerised surface wound mapping trial performed at the role 3 hospital in Afghanistan. J R Army Med Corps. 2015;161(1):36–41.

    Article  PubMed  Google Scholar 

  7. Lewis EA, Pigott MA, Randall A, Hepper AE. The development and introduction of ballistic protection of the external genitalia and perineum. J R Army Med Corps. 2013;159 Suppl 1:i15–7.

    Article  PubMed  Google Scholar 

  8. Brayley MJ. Modern body armour. 1st ed. Ramsbury: The Crowood Press Ltd; 2011. ISBN 13: 9781847972484.

    Google Scholar 

  9. Lewis EA. Between Iraq and a hard plate. Recent developments in UK military personal armour. Presented at the Personal Armour Systems Symposia conference. Leeds, UK. June 2006.

    Google Scholar 

  10. Ryan JM, Bailie R, Diack G, Kierle J, Williams T. Safe removal of combat body armour lightweight following battlefield wounding – a timely reminder. J R Army Med Corps. 1994;140(1):26–8.

    Article  CAS  PubMed  Google Scholar 

  11. Breeze J, Baxter D, Carr D, Midwinter MJ. Defining combat helmet coverage for protection against explosively propelled fragments. J R Army Med Corps. 2015;161(1):9–13.

    Article  PubMed  Google Scholar 

  12. Bastian ND, Brown D, Fulton LV, Mitchell R, Pollard W, Robinson M, Wilson R. Analyzing the future of army aeromedical evacuation units and equipment: a mixed methods, requirements-based approach. Mil Med. 2013;178(3):321–9.

    Article  PubMed  Google Scholar 

  13. Carr DJ, Horsfall I, Malbon C. Is behind armour blunt trauma a real threat to users or body armour? A systematic review. J R Amry Med Crops. 2013. doi:10.1136/jramc-2013-000161. [Epub ahead of print].

    Google Scholar 

  14. Breeze J, Newbery T, Pope D, Midwinter MJ. The challenges in developing a finite element injury model of the neck to predict the penetration of explosively propelled projectiles. J R Army Med Corps. 2014;160(3):220–5.

    Article  PubMed  Google Scholar 

  15. Standring S. Gray’s anatomy. 40th ed. London, UK: Churchill Livingstone; 2008. ISBN 13: 978-0-443-06684-9.

    Google Scholar 

  16. Ellis H, Mahadevan V. Clinical anatomy: applied anatomy for students and junior doctors. 12th ed. Hoboken, New Jersey, USA: Wiley-Blackwell; 2010. ISBN:978–1405186179.

    Google Scholar 

  17. Mirjalili SA, McFadden SL, Buckenham T, Stringer MD. A reappraisal of adult abdominal surface anatomy. Clin Anat. 2012;25(7):844–50.

    Article  PubMed  Google Scholar 

  18. Tyrrell A. Anthropometry survey of UK military personnel 2006–7 summary report. QINETIQ/07/02615. 2007 (Unclassified).

    Google Scholar 

  19. Vorndran E, Klarner M, Klammert U, Grover LM, Patel S, JBarralet JE, Gbureck U. 3D powder printing of β-Tricalcium phosphate ceramics using different strategies. Adv Eng Mater. 2008;10(12):B67–71.

    Article  CAS  Google Scholar 

  20. Breeze J, Fryer R, Hare J, Delaney R, Hunt NC, Lewis EA, Clasper J. Clinical and post mortem analysis of combat neck injury used to inform a novel Coverage of Armour Tool. Injury. 2015;46(4):629–33.

    Article  CAS  PubMed  Google Scholar 

  21. Berlin R, Gelin LE, Janzon B, Lewis DH, Rybeck B, Sandegård J, Seeman T. Local effects of assault rifle bullets in live tissues. Acta Chir Scand Suppl. 1976;459:1–76.

    CAS  PubMed  Google Scholar 

  22. Holmström A, Larsson J, Lewis DH. Microcirculatory and biochemical studies of skeletal muscle tissue after high energy missile trauma. Acta Chir Scand Suppl. 1982;508:257–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Breeze PhD, MRCS, MFDS, MBBS, BDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Breeze, J., Lewis, E.A., Fryer, R. (2016). Optimising the Anatomical Coverage Provided by Military Body Armour Systems. In: Bull, A., Clasper, J., Mahoney, P. (eds) Blast Injury Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21867-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21867-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21866-3

  • Online ISBN: 978-3-319-21867-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics