Skip to main content

Finding Pairwise Intersections Inside a Query Range

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9214))

Included in the following conference series:

Abstract

We study the following problem: preprocess a set \(\mathcal {O}\) of objects into a data structure that allows us to efficiently report all pairs of objects from \(\mathcal {O}\) that intersect inside an axis-aligned query rangeĀ \(Q\). We present data structures of size \(O(n\,\mathrm {polylog}\,n)\) and with query time \(O((k+1)\,\mathrm {polylog}\, n)\) time, where k is the number of reported pairs, for two classes of objects in the plane: axis-aligned rectangles and objects with small union complexity. For the 3-dimensional case where the objects and the query range are axis-aligned boxes inĀ \(\mathbb {R}^3\), we present a data structure of size \(O(n\sqrt{n}\, \mathrm {polylog}\, n)\) and query time \(O((\sqrt{n}+k)\,\mathrm {polylog}\,n)\). When the objects and query are fat, we obtain \(O((k+1)\,\mathrm {polylog}\,n)\) query time using \(O(n\,\mathrm {polylog}\,n)\) storage.

M. de Berg and A.D. Mehrabi were supported by the Netherlands Organization for Scientific Research (NWO) under grants 024.002.003 and 612.001.118, respectively. J. Gudmundsson was supported by the Australian Research Council (project numbers FT100100755 and DP150101134)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. Contemporary Mathematics 223, 1ā€“56 (1999)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Aronov, B., de Berg, M., Ezra, E., Sharir, M.: Improved bounds for the union of locally fat objects in the plane. SIAM J. Comput. 43(2), 543ā€“572 (2014)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer (2008)

    Google ScholarĀ 

  4. Chazelle, B.: Filtering search: A new approach to query-answering. SIAM J. Comput. 15, 703ā€“724 (1986)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17, 427ā€“462 (1988)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: Algorithms for bichromatic line-segment problems and polyhedral terrains. Algorithmica 11, 116ā€“132 (1994)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry. II. Discr. Comput. Geom. I 4, 387ā€“421 (1989)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15, 317ā€“340 (1986)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. Edelsbrunner, H., Overmars, M.H., Seidel, R.: Some methods of computational geometry applied to computer graphics. Comput. Vision, Graphics and Image Proc. 28, 92ā€“108 (1984)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  10. Gajentaan, A., Overmars, M.H.: On a class of \(O(n^2)\) problems in computational geometry. Comput. Geom. Theory Appl. 5, 165ā€“185 (1995)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. Goodman, J.E., Oā€™Rourke, J.: Range Searching. Handbook of Discrete and Computational Geometry, 2nd edn., Chapter 36 (2004)

    Google ScholarĀ 

  12. Keden, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discr. Comput. Geom. 1, 59ā€“71 (1986)

    ArticleĀ  Google ScholarĀ 

  13. Rahul, S., Das, A.S., Rajan, K.S., Srinatan, K.: Range-aggregate queries involving geometric aggregation operations. In: Proc. Workshop on Alg. Comp. vol. 1, pp. 122ā€“133 (2011)

    Google ScholarĀ 

  14. Subramanian, S., Ramaswamy, S.: The P-range tree: A new data structure for range searching in secondary memory. In: Proc. 6th ACM-SIAM Symp. Discr. Alg., pp. 378ā€“387 (1995)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali D. Mehrabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de Berg, M., Gudmundsson, J., Mehrabi, A.D. (2015). Finding Pairwise Intersections Inside a Query Range. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21840-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21839-7

  • Online ISBN: 978-3-319-21840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics