Skip to main content

The Immunological Role of Nutrition in the Gut

  • Chapter
  • 1579 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

Nutrition support is necessary for recovery from serious injury and illness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deitch EA. Nutrition and the gut mucosal barrier. Curr Opin Gen Surg. 1993:85–91.

    Google Scholar 

  2. Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS. Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN J Parenter Enteral Nutr. 1979;3(6):452–6.

    Article  CAS  PubMed  Google Scholar 

  3. Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR. Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg. 1980;192(4):570–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hanna M, Kudsk K. Nutritional and pharmacological enhancement of gut-associated lymphoid tissue. Can J Gastroenterol. 2000;14(Suppl D):145D–51.

    PubMed  Google Scholar 

  5. Deitch EA, Ma WJ, Ma L, Berg RD, Specian RD. Protein malnutrition predisposes to inflammatory-induced gut-origin septic states. Ann Surg. 1990;211(5):560–7. discussion 7-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299–309.

    Article  PubMed  Google Scholar 

  7. Petersen SR, Kudsk KA, Carpenter G, Sheldon GE. Malnutrition and immunocompetence: increased mortality following an infectious challenge during hyperalimentation. J Trauma. 1981;21(7):528–33.

    Article  CAS  PubMed  Google Scholar 

  8. Kudsk KA, Carpenter G, Petersen S, Sheldon GF. Effect of enteral and parenteral feeding in malnourished rats with E. coli-hemoglobin adjuvant peritonitis. J Surg Res. 1981;31(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  9. Kudsk KA, Stone JM, Carpenter G, Sheldon GF. Enteral and parenteral feeding influences mortality after hemoglobin-E. coli peritonitis in normal rats. J Trauma. 1983;23(7):605–9.

    Article  CAS  PubMed  Google Scholar 

  10. Moore F, Moore E, Jones T, McCroskey B, Peterson V. TEN versus TPN following major abdominal trauma – reduced septic morbidity. J Trauma. 1989;29(7):916–22. discussion 22-3.

    Article  CAS  PubMed  Google Scholar 

  11. Moore E, Jones T. Benefits of immediate jejunostomy feeding after major abdominal trauma – a prospective, randomized study. J Trauma. 1986;26(10):874–81.

    Article  CAS  PubMed  Google Scholar 

  12. Kudsk KA, Croce MA, Fabian TC, Minard G, Tolley EA, Poret HA, et al. Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg. 1992;215(5):503–11. discussion 11-3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291(5505):881–4.

    Article  CAS  PubMed  Google Scholar 

  14. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Curtis MM, Sperandio V. A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol. 2011;4(2):133–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Corthésy B. Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun Rev. 2013;12(6):661–5.

    Article  PubMed  CAS  Google Scholar 

  17. Alverdy J, Zaborina O, Wu L. The impact of stress and nutrition on bacterial-host interactions at the intestinal epithelial surface. Curr Opin Clin Nutr Metab Care. 2005;8(2):205–9.

    Article  PubMed  Google Scholar 

  18. Alverdy J. The effect of nutrition on gastrointestinal barrier function. Semin Respir Infect. 1994;9(4):248–55.

    CAS  PubMed  Google Scholar 

  19. Laughlin RS, Musch MW, Hollbrook CJ, Rocha FM, Chang EB, Alverdy JC. The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg. 2000;232(1):133–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Alverdy J, Stern E. Effect of immunonutrition on virulence strategies in bacteria. Nutrition. 1998;14(7-8):580–4.

    Article  CAS  PubMed  Google Scholar 

  21. Ramos HC, Rumbo M, Sirard JC. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 2004;12(11):509–17.

    Article  CAS  PubMed  Google Scholar 

  22. Wu LR, Zaborina O, Zaborin A, Chang EB, Musch M, Holbrook C, et al. Surgical injury and metabolic stress enhance the virulence of the human opportunistic pathogen Pseudomonas aeruginosa. Surg Infect (Larchmt). 2005;6(2):185–95.

    Article  Google Scholar 

  23. Wu L, Holbrook C, Zaborina O, Ploplys E, Rocha F, Pelham D, et al. Pseudomonas aeruginosa expresses a lethal virulence determinant, the PA-I lectin/adhesin, in the intestinal tract of a stressed host: the role of epithelia cell contact and molecules of the Quorum Sensing Signaling System. Ann Surg. 2003;238(5):754–64.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kohler JE, Zaborina O, Wu L, Wang Y, Bethel C, Chen Y, et al. Components of intestinal epithelial hypoxia activate the virulence circuitry of Pseudomonas. Am J Physiol Gastrointest Liver Physiol. 2005;288(5):G1048–54.

    Article  CAS  PubMed  Google Scholar 

  25. Deitch EA. Bacterial translocation of the gut flora. J Trauma. 1990;30(12 Suppl):S184–9.

    Article  CAS  PubMed  Google Scholar 

  26. Fukatsu K, Kudsk KA. Nutrition and gut immunity. Surg Clin North Am. 2011;91(4):755–70. vii.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: distribution and functional significance in health and diseases. Tissue Barriers. 2013;1(3), e24978.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ivanov AI. Structure and regulation of intestinal epithelial tight junctions: current concepts and unanswered questions. Adv Exp Med Biol. 2012;763:132–48.

    CAS  PubMed  Google Scholar 

  29. Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(6):1131S–41.

    CAS  PubMed  Google Scholar 

  30. Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun. 2009;1(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  31. Johansson ME, Hansson GC. Mucus and the goblet cell. Dig Dis. 2013;31(3–4):305–9.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319–30.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Johansson ME, Ambort D, Pelaseyed T, Schutte A, Gustafsson JK, Ermund A, et al. Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci. 2011;68(22):3635–41.

    Article  CAS  PubMed  Google Scholar 

  34. Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO, et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol. 2011;300(2):G327–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131(1):117–29.

    Article  PubMed  CAS  Google Scholar 

  36. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol. 2007;19(2):70–83.

    Article  CAS  PubMed  Google Scholar 

  38. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Masuda K, Sakai N, Nakamura K, Yoshioka S, Ayabe T. Bactericidal activity of mouse α-defensin cryptdin-4 predominantly affects noncommensal bacteria. J Innate Immun. 2011;3(3):315–26.

    Article  CAS  PubMed  Google Scholar 

  40. Heneghan AF, Pierre JF, Tandee K, Shanmuganayagam D, Wang X, Reed JD, et al. Parenteral nutrition decreases paneth cell function and intestinal bactericidal activity while increasing susceptibility to bacterial enteroinvasion. JPEN J Parenter Enteral Nutr. 2014;38(7):817–24.

    Article  CAS  PubMed  Google Scholar 

  41. Demehri FR, Barrett M, Ralls MW, Miyasaka EA, Feng Y, Teitelbaum DH. Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Front Cell Infect Microbiol. 2013;3:105.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9(5):356–68.

    Article  CAS  PubMed  Google Scholar 

  43. Dommett R, Zilbauer M, George JT, Bajaj-Elliott M. Innate immune defence in the human gastrointestinal tract. Mol Immunol. 2005;42(8):903–12.

    Article  CAS  PubMed  Google Scholar 

  44. Ogawa H, Fukushima K, Naito H, Funayama Y, Unno M, Takahashi K, et al. Increased expression of HIP/PAP and regenerating gene III in human inflammatory bowel disease and a murine bacterial reconstitution model. Inflamm Bowel Dis. 2003;9(3):162–70.

    Article  PubMed  Google Scholar 

  45. Pierre JF, Heneghan AF, Tsao FH, Sano Y, Jonker MA, Omata J, et al. Route and type of nutrition and surgical stress influence secretory phospholipase A2 secretion of the murine small intestine. JPEN J Parenter Enteral Nutr. 2011;35(6):748–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313(5790):1126–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A. 2008;105(52):20858–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. McGhee JR, Mestecky J, Dertzbaugh MT, Eldridge JH, Hirasawa M, Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992;10(2):75–88.

    Article  CAS  PubMed  Google Scholar 

  49. Brandtzaeg P, Pabst R. Let’s go mucosal: communication on slippery ground. Trends Immunol. 2004;25(11):570–7.

    Article  CAS  PubMed  Google Scholar 

  50. Czerkinsky C, Prince SJ, Michalek SM, Jackson S, Russell MW, Moldoveanu Z, et al. IgA antibody-producing cells in peripheral blood after antigen ingestion: evidence for a common mucosal immune system in humans. Proc Natl Acad Sci U S A. 1987;84(8):2449–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Czerkinsky C, Svennerholm AM, Quiding M, Jonsson R, Holmgren J. Antibody-producing cells in peripheral blood and salivary glands after oral cholera vaccination of humans. Infect Immun. 1991;59(3):996–1001.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Czerkinsky C, Svennerholm AM, Holmgren J. Induction and assessment of immunity at enteromucosal surfaces in humans: implications for vaccine development. Clin Infect Dis. 1993;16 Suppl 2:S106–16.

    Article  PubMed  Google Scholar 

  53. Czerkinsky C, Prince SJ, Michalek SM, Jackson S, Moldoveanu Z, Russell MW, et al. Oral immunization with bacterial antigen induces IgA-secreting cells in peripheral blood in humans. Adv Exp Med Biol. 1987;216B:1709–19.

    CAS  PubMed  Google Scholar 

  54. Husband AJ, Gowans JL. The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J Exp Med. 1978;148(5):1146–60.

    Article  CAS  PubMed  Google Scholar 

  55. Craig SW, Cebra JJ. Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med. 1971;134(1):188–200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Bargatze RF, Jutila MA, Butcher EC. Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity. 1995;3(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  57. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, et al. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell. 1993;74(1):185–95.

    Article  CAS  PubMed  Google Scholar 

  58. Sikorski EE, Hallmann R, Berg EL, Butcher EC. The Peyer’s patch high endothelial receptor for lymphocytes, the mucosal vascular addressin, is induced on a murine endothelial cell line by tumor necrosis factor-alpha and IL-1. J Immunol. 1993;151(10):5239–50.

    CAS  PubMed  Google Scholar 

  59. Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science. 1998;279(5349):381–4.

    Article  CAS  PubMed  Google Scholar 

  60. Guy-Grand D, Griscelli C, Vassalli P. The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur J Immunol. 1974;4(6):435–43.

    Article  CAS  PubMed  Google Scholar 

  61. Man AL, Prieto-Garcia ME, Nicoletti C. Improving M cell mediated transport across mucosal barriers: do certain bacteria hold the keys? Immunology. 2004;113(1):15–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Didierlaurent A, Sirard JC, Kraehenbuhl JP, Neutra MR. How the gut senses its content. Cell Microbiol. 2002;4(2):61–72.

    Article  CAS  PubMed  Google Scholar 

  63. Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer L. Mucosal immunology. 3rd ed. Philadelphia, PA: Elsevier; 2005.

    Google Scholar 

  64. Brandtzaeg P, Kiyono H, Pabst R, Russell MW. Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol. 2008;1(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  65. Parrott DM. The gut as a lymphoid organ. Clin Gastroenterol. 1976;5(2):211–28.

    CAS  PubMed  Google Scholar 

  66. Mostov KE, Friedlander M, Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature. 1984;308(5954):37–43.

    Article  CAS  PubMed  Google Scholar 

  67. Morowitz MJ, Babrowski T, Carlisle EM, Olivas A, Romanowski KS, Seal JB, et al. The human microbiome and surgical disease. Ann Surg. 2011;253(6):1094–101.

    Article  PubMed  Google Scholar 

  68. Pappo J, Owen RL. Absence of secretory component expression by epithelial cells overlying rabbit gut-associated lymphoid tissue. Gastroenterology. 1988;95(5):1173–7.

    CAS  PubMed  Google Scholar 

  69. Gehrke I, Pabst R. The epithelium overlying rabbit bronchus-associated lymphoid tissue does not express the secretory component of immunoglobulin A. Cell Tissue Res. 1990;259(2):397–9.

    Article  CAS  PubMed  Google Scholar 

  70. Giannasca PJ, Giannasca KT, Falk P, Gordon JI, Neutra MR. Regional differences in glycoconjugates of intestinal M cells in mice: potential targets for mucosal vaccines. Am J Physiol. 1994;267(6 Pt 1):G1108–21.

    CAS  PubMed  Google Scholar 

  71. Lebman DA, Coffman RL. The effects of IL-4 and IL-5 on the IgA response by murine Peyer’s patch B cell subpopulations. J Immunol. 1988;141(6):2050–6.

    CAS  PubMed  Google Scholar 

  72. Coffman RL, Savelkoul HF, Lebman DA. Cytokine regulation of immunoglobulin isotype switching and expression. Semin Immunol. 1989;1(1):55–63.

    CAS  PubMed  Google Scholar 

  73. Roux ME, McWilliams M, Phillips-Quagliata JM, Lamm ME. Differentiation pathway of Peyer’s patch precursors of IgA plasma cells in the secretory immune system. Cell Immunol. 1981;61(1):141–53.

    Article  CAS  PubMed  Google Scholar 

  74. Hieshima K, Ohtani H, Shibano M, Izawa D, Nakayama T, Kawasaki Y, et al. CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J Immunol. 2003;170(3):1452–61.

    Article  CAS  PubMed  Google Scholar 

  75. Moore FA, Feliciano DV, Andrassy RJ, McArdle AH, Booth FV, Morgenstein-Wagner TB, et al. Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann Surg. 1992;216(2):172–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Saito H, Trocki O, Alexander JW, Kopcha R, Heyd T, Joffe SN. The effect of route of nutrient administration on the nutritional state, catabolic hormone secretion, and gut mucosal integrity after burn injury. JPEN J Parenter Enteral Nutr. 1987;11(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  77. Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNMC, Delarue J, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24(4):502–9.

    Article  PubMed  Google Scholar 

  78. Dudrick SJ, Wilmore DW, Vars HM, Rhoads JE. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery. 1968;64(1):134–42.

    CAS  PubMed  Google Scholar 

  79. Perioperative total parenteral nutrition in surgical patients. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. N Engl J Med. 1991;325(8):525–32.

    Google Scholar 

  80. Kudsk KA, Jonathan E. Rhoads lecture: of mice and men… and a few hundred rats. JPEN J Parenter Enteral Nutr. 2008;32(4):460–73.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Jonker MA, Hermsen JL, Gomez FE, Sano Y, Kudsk KA. Injury induces localized airway increases in pro-inflammatory cytokines in humans and mice. Surg Infect (Larchmt). 2011;12(1):49–56.

    Article  Google Scholar 

  82. Jonker MA, Hermsen JL, Sano Y, Heneghan AF, Lan J, Kudsk KA. Small intestine mucosal immune system response to injury and the impact of parenteral nutrition. Surgery. 2012;151(2):278–86.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Johnson LR, Copeland EM, Dudrick SJ, Lichtenberger LM, Castro GA. Structural and hormonal alterations in the gastrointestinal tract of parenterally fed rats. Gastroenterology. 1975;68(5 Pt 1):1177–83.

    CAS  PubMed  Google Scholar 

  84. Kansagra K, Stoll B, Rognerud C, Niinikoski H, Ou CN, Harvey R, et al. Total parenteral nutrition adversely affects gut barrier function in neonatal piglets. Am J Physiol Gastrointest Liver Physiol. 2003;285(6):G1162–70.

    Article  CAS  PubMed  Google Scholar 

  85. Heneghan A, Pierre J, Gosain A, Kudsk K. IL-25 stimulation of Parenteral Nutrition (PN) Restores Innate Immune Molecules. Ann Surg. 2014;259(2):394–400.

    Google Scholar 

  86. Yang H, Feng Y, Sun X, Teitelbaum DH. Enteral versus parenteral nutrition: effect on intestinal barrier function. Ann N Y Acad Sci. 2009;1165:338–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Schmitz H, Fromm M, Bentzel CJ, Scholz P, Detjen K, Mankertz J, et al. Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci. 1999;112(Pt 1):137–46.

    CAS  PubMed  Google Scholar 

  88. Zeissig S, Bojarski C, Buergel N, Mankertz J, Zeitz M, Fromm M, et al. Downregulation of epithelial apoptosis and barrier repair in active Crohn’s disease by tumour necrosis factor alpha antibody treatment. Gut. 2004;53(9):1295–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Buchman AL, Moukarzel AA, Bhuta S, Belle M, Ament ME, Eckhert CD, et al. Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. JPEN J Parenter Enteral Nutr. 1995;19(6):453–60.

    Article  CAS  PubMed  Google Scholar 

  91. Pierre JF, Heneghan AF, Meudt JM, Shea MP, Krueger CG, Reed JD, et al. Parenteral nutrition increases susceptibility of ileum to invasion by E coli. J Surg Res. 2013;183(2):583–91.

    Article  CAS  PubMed  Google Scholar 

  92. Li J, Kudsk KA, Gocinski B, Dent D, Glezer J, Langkamp-Henken B. Effects of parenteral and enteral nutrition on gut-associated lymphoid tissue. J Trauma. 1995;39(1):44–51. discussion-2.

    Article  CAS  PubMed  Google Scholar 

  93. Zarzaur B, Fukatsu K, Johnson C, Eng E, Kudsk K. A temporal study of diet-induced changes in Peyer patch MAdCAM-1 expression. Surg Forum. 2001;52:194–6.

    Google Scholar 

  94. Gomez FE, Lan J, Kang W, Ueno C, Kudsk KA. Parenteral nutrition and fasting reduces mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) mRNA in Peyer’s patches of mice. JPEN J Parenter Enteral Nutr. 2007;31(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  95. Ikeda S, Kudsk KA, Fukatsu K, Johnson CD, Le T, Reese S, et al. Enteral feeding preserves mucosal immunity despite in vivo MAdCAM-1 blockade of lymphocyte homing. Ann Surg. 2003;237(5):677–85. discussion 85.

    PubMed Central  PubMed  Google Scholar 

  96. Kang W, Gomez FE, Lan J, Sano Y, Ueno C, Kudsk KA. Parenteral nutrition impairs gut-associated lymphoid tissue and mucosal immunity by reducing lymphotoxin beta receptor expression. Ann Surg. 2006;244(3):392–9.

    PubMed Central  PubMed  Google Scholar 

  97. Kang W, Kudsk KA, Sano Y, Lan J, Yang-Xin F, Gomez FE, et al. Effects of lymphotoxin beta receptor blockade on intestinal mucosal immunity. JPEN J Parenter Enteral Nutr. 2007;31(5):358–64. discussion 64-5.

    Article  CAS  PubMed  Google Scholar 

  98. Hermsen JL, Gomez FE, Maeshima Y, Sano Y, Kang W, Kudsk KA. Decreased enteral stimulation alters mucosal immune chemokines. JPEN J Parenter Enteral Nutr. 2008;32(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  99. Alverdy JC, Aoys E, Moss GS. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery. 1988;104(2):185–90.

    CAS  PubMed  Google Scholar 

  100. Alverdy JC, Aoys E, Moss GS. Effect of commercially available chemically defined liquid diets on the intestinal microflora and bacterial translocation from the gut. JPEN J Parenter Enteral Nutr. 1990;14(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  101. Wu Y, Kudsk KA, DeWitt RC, Tolley EA, Li J. Route and type of nutrition influence IgA-mediating intestinal cytokines. Ann Surg. 1999;229(5):662–7. discussion 7-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Sano Y, Gomez F, Kang W, Lan J, Maeshima Y, Hermsen J, et al. Intestinal polymeric immunoglobulin receptor is affected by type and route of nutrition. JPEN J Parenter Enteral Nutr. 2007;31(5):351–6. discussion 6-7.

    Article  CAS  PubMed  Google Scholar 

  103. Okamoto K, Fukatsu K, Hashiguchi Y, Ueno H, Shinto E, Moriya T, et al. Lack of preoperative enteral nutrition reduces gut-associated lymphoid cell numbers in colon cancer patients: a possible mechanism underlying increased postoperative infectious complications during parenteral nutrition. Ann Surg. 2013;258(6):1059–64.

    Article  PubMed  Google Scholar 

  104. Okamoto K, Fukatsu K, Ueno C, Shinto E, Hashiguchi Y, Nagayoshi H, et al. T lymphocyte numbers in human gut associated lymphoid tissue are reduced without enteral nutrition. JPEN J Parenter Enteral Nutr. 2005;29(1):56–8.

    Article  PubMed  Google Scholar 

  105. Hermsen JL, Gomez FE, Sano Y, Kang W, Maeshima Y, Kudsk KA. Parenteral feeding depletes pulmonary lymphocyte populations. JPEN J Parenter Enteral Nutr. 2009;33(5):535–40.

    Article  PubMed Central  PubMed  Google Scholar 

  106. King BK, Li J, Kudsk KA. A temporal study of TPN-induced changes in gut-associated lymphoid tissue and mucosal immunity. Arch Surg. 1997;132(12):1303–9.

    Article  CAS  PubMed  Google Scholar 

  107. Sano Y, Gomez FE, Hermsen JL, Kang W, Lan J, Maeshima Y, et al. Parenteral nutrition induces organ specific alterations in polymeric immunoglobulin receptor levels. J Surg Res. 2008;149(2):236–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Sano Y, Hermsen JL, Kang W, Gomez FE, Lan J, Maeshima Y, et al. Parenteral nutrition maintains pulmonary IgA antibody transport capacity, but not active transport, following injury. Am J Surg. 2009;198(1):105–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Fukatsu K, Lundberg AH, Hanna MK, Wu Y, Wilcox HG, Granger DN, et al. Increased expression of intestinal P-selectin and pulmonary E-selectin during intravenous total parenteral nutrition. Arch Surg. 2000;135(10):1177–82.

    Article  CAS  PubMed  Google Scholar 

  110. Murphy SL, Xu J, Kochanek KD. Deaths: final data for 2010. National vital statistics reports. 2013;61(4).

    Google Scholar 

  111. Bone RC, Fisher CJ, Clemmer TP, Slotman GJ, Metz CA, Balk RA. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987;317(11):653–8.

    Article  CAS  PubMed  Google Scholar 

  112. Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med. 1980;68(3):344–55.

    Article  CAS  PubMed  Google Scholar 

  113. Kudsk K, Minard G, Croce M, Brown R, Lowrey T, Pritchard F, et al. A randomized trial of isonitrogenous enteral diets after severe trauma. An immune-enhancing diet reduces septic complications. Ann Surg. 1996;224(4):531–40. discussion 40-3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Gramlich L, Kichian K, Pinilla J, Rodych NJ, Dhaliwal R, Heyland DK. Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition. 2004;20(10):843–8.

    Article  PubMed  Google Scholar 

  115. Kudsk KA, Li J, Renegar KB. Loss of upper respiratory tract immunity with parenteral feeding. Ann Surg. 1996;223(6):629–35. discussion 35-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Renegar KB, Johnson CD, Dewitt RC, King BK, Li J, Fukatsu K, et al. Impairment of mucosal immunity by total parenteral nutrition: requirement for IgA in murine nasotracheal anti-influenza immunity. J Immunol. 2001;166(2):819–25.

    Article  CAS  PubMed  Google Scholar 

  117. Johnson CD, Kudsk KA, Fukatsu K, Renegar KB, Zarzaur BL. Route of nutrition influences generation of antibody-forming cells and initial defense to an active viral infection in the upper respiratory tract. Ann Surg. 2003;237(4):565–73.

    PubMed Central  PubMed  Google Scholar 

  118. Janu P, Li J, Renegar K, Kudsk K. Recovery of gut-associated lymphoid tissue and upper respiratory tract immunity after parenteral nutrition. Ann Surg. 1997;225(6):707–15. discussion 15-7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. King BK, Kudsk KA, Li J, Wu Y, Renegar KB. Route and type of nutrition influence mucosal immunity to bacterial pneumonia. Ann Surg. 1999;229(2):272–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Annane D, Clair B, Mathieu B, Boucly C, Lesieur O, Donetti L, et al. Immunoglobulin A levels in bronchial samples during mechanical ventilation and onset of nosocomial pneumonia in critically ill patients. Am J Respir Crit Care Med. 1996;153(5):1585–90.

    Article  CAS  PubMed  Google Scholar 

  121. Niederman MS, Merrill WW, Polomski LM, Reynolds HY, Gee JB. Influence of sputum IgA and elastase on tracheal cell bacterial adherence. Am Rev Respir Dis. 1986;133(2):255–60.

    CAS  PubMed  Google Scholar 

  122. Niederman MS, Mantovani R, Schoch P, Papas J, Fein AM. Patterns and routes of tracheobronchial colonization in mechanically ventilated patients. The role of nutritional status in colonization of the lower airway by Pseudomonas species. Chest. 1989;95(1):155–61.

    Article  CAS  PubMed  Google Scholar 

  123. Kudsk KA, Hermsen JL, Genton L, Faucher L, Gomez FE. Injury stimulates an innate respiratory immunoglobulin a immune response in humans. J Trauma. 2008;64(2):316–23. discussion 23-5.

    Article  PubMed  Google Scholar 

  124. Jonker MA, Sano Y, Hermsen JL, Lan J, Kudsk KA. Proinflammatory cytokine surge after injury stimulates an airway immunoglobulin a increase. J Trauma. 2010;69(4):843–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Hermsen J, Sano Y, Gomez F, Maeshima Y, Kang W, Kudsk K. Parenteral nutrition inhibits tumor necrosis factor-alpha-mediated IgA response to injury. Surg Infect (Larchmt). 2008;9(1):33–40.

    Article  Google Scholar 

  126. Fukatsu K, Kudsk KA, Zarzaur BL, Wu Y, Hanna MK, DeWitt RC. TPN decreases IL-4 and IL-10 mRNA expression in lipopolysaccharide stimulated intestinal lamina propria cells but glutamine supplementation preserves the expression. Shock. 2001;15(4):318–22.

    Article  CAS  PubMed  Google Scholar 

  127. Fukatsu K, Lundberg AH, Hanna MK, Wu Y, Wilcox HG, Granger DN, et al. Route of nutrition influences intercellular adhesion molecule-1 expression and neutrophil accumulation in intestine. Arch Surg. 1999;134(10):1055–60.

    Article  CAS  PubMed  Google Scholar 

  128. Cao Y, Xu Y, Lu T, Gao F, Mo Z. Meta-analysis of enteral nutrition versus total parenteral nutrition in patients with severe acute pancreatitis. Ann Nutr Metab. 2008;53(3-4):268–75.

    Article  CAS  PubMed  Google Scholar 

  129. Moore FA, Haenel JB, Moore EE, Whitehill TA. Incommensurate oxygen consumption in response to maximal oxygen availability predicts postinjury multiple organ failure. J Trauma. 1992;33(1):58–65. discussion-7.

    Article  CAS  PubMed  Google Scholar 

  130. Friese RS, Rehring TF, Wollmering M, Moore EE, Ketch LL, Banerjee A, et al. Trauma primes cells. Shock. 1994;1(5):388–94.

    Article  CAS  PubMed  Google Scholar 

  131. Moore EE, Moore FA, Franciose RJ, Kim FJ, Biffl WL, Banerjee A. The postischemic gut serves as a priming bed for circulating neutrophils that provoke multiple organ failure. J Trauma. 1994;37(6):881–7.

    Article  CAS  PubMed  Google Scholar 

  132. Magnotti LJ, Deitch EA. Burns, bacterial translocation, gut barrier function, and failure. J Burn Care Rehabil. 2005;26(5):383–91.

    Article  PubMed  Google Scholar 

  133. Deitch EA. Role of the gut lymphatic system in multiple organ failure. Curr Opin Crit Care. 2001;7(2):92–8.

    Article  CAS  PubMed  Google Scholar 

  134. Deitch EA, Xu D, Kaise VL. Role of the gut in the development of injury- and shock induced SIRS and MODS: the gut-lymph hypothesis, a review. Front Biosci. 2006;11:520–8.

    Article  CAS  PubMed  Google Scholar 

  135. Fukatsu K, Zarzaur BL, Johnson CD, Lundberg AH, Wilcox HG, Kudsk KA. Enteral nutrition prevents remote organ injury and death after a gut ischemic insult. Ann Surg. 2001;233(5):660–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Li J, Kudsk KA, Hamidian M, Gocinski BL. Bombesin affects mucosal immunity and gut-associated lymphoid tissue in intravenously fed mice. Arch Surg. 1995;130(11):1164–9. discussion 9-70.

    Article  CAS  PubMed  Google Scholar 

  137. Janu PG, Kudsk KA, Li J, Renegar KB. Effect of bombesin on impairment of upper respiratory tract immunity induced by total parenteral nutrition. Arch Surg. 1997;132(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  138. DeWitt RC, Wu Y, Renegar KB, King BK, Li J, Kudsk KA. Bombesin recovers gut-associated lymphoid tissue and preserves immunity to bacterial pneumonia in mice receiving total parenteral nutrition. Ann Surg. 2000;231(1):1–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Hanna M, Zarzaur BJ, Fukatsu K, Chance DeWitt R, Renegar K, Sherrell C, et al. Individual neuropeptides regulate gut-associated lymphoid tissue integrity, intestinal immunoglobulin A levels, and respiratory antibacterial immunity. JPEN J Parenter Enteral Nutr. 2000;24(5):261–8; discussion 8-9.

    Google Scholar 

  140. Zarzaur BL, Wu Y, Fukatsu K, Johnson CD, Kudsk KA. The neuropeptide bombesin improves IgA-mediated mucosal immunity with preservation of gut interleukin-4 in total parenteral nutrition-fed mice. Surgery. 2002;131(1):59–65.

    Article  PubMed  Google Scholar 

  141. Genton L, Reese SR, Ikeda S, Le Tho C, Kudsk KA. The C-terminal heptapeptide of bombesin reduces the deleterious effect of total parenteral nutrition (TPN) on gut-associated lymphoid tissue (GALT) mass but not intestinal immunoglobulin A in vivo. JPEN J Parenter Enteral Nutr. 2004;28(6):431–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The material is supported in part by Award Number I01BX001672 from the Biomedical Laboratory Research and Development Service of the VA Office of Research and Development. The contents of this body of work do not represent the views of the Veterans Affairs or the US Government. This work is also supported by the NIH Surgical Oncology Research Training Program: T32CA090217-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Kudsk MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Busch, R.A., Kudsk, K.A. (2016). The Immunological Role of Nutrition in the Gut. In: Seres, D., Van Way, III, C. (eds) Nutrition Support for the Critically Ill. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-21831-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21831-1_2

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-21830-4

  • Online ISBN: 978-3-319-21831-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics