Skip to main content

Quantum Computing Meets the Real World

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9252))

Abstract

Quantum information processing as a scalable experimental pursuit has experienced significant progress in recent years. Multiple laboratories at large research organizations have constructed working systems with multiple interacting qubits, focused on the implementation of small-scale computational problems or the demonstration of quantum error correction techniques. This stage of development is particularly interesting because the engineering issues related to controlling multiple quantum systems in a noisy environment are being clarified as the various systems progress, illuminating where the best hopes for quantum computation may lie. These practical pathways are not always the same as what has been predicted in the closed-system theoretical context, so creative algorithmic thinking is needed to unlock the potential of the real devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corcoles, A. D., et al.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nature Commun. 6, 6979 (2015)

    Google Scholar 

  2. Leibfried, D., et al.: Creation of a ‘six-atom Schrodinger’ cat state. Nature 438, 639–642 (2005)

    Article  Google Scholar 

  3. Farhi, E., et al.: Quantum computation by adiabatic evolution (2000). arXiv preprint quant-ph/0001106

  4. Aharonov, D., et al.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755–787 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  Google Scholar 

  6. Kelly, J., et al.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015)

    Article  Google Scholar 

  7. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  Google Scholar 

  8. Blume-Kohout, R.: Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit (2013). arXiv preprint quant-ph/1310.4492

  9. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

    Google Scholar 

  10. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  11. Amin, M.H.S., Love, P.J., Truncik, C.J.S.: Thermally assisted adiabatic quantum computation. Phys. Rev. Lett. 100(6), 060503 (2008)

    Article  Google Scholar 

  12. Denchev, V., Ding, N., Neven, H.: Robust classification with adiabatic quantum optimization. In: Proceedings of the 29th International Conference on Machine Learning, pp. 863–870 (2012)

    Google Scholar 

  13. Rieffel, E.G., et al.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)

    Article  MathSciNet  Google Scholar 

  14. Santra, S., et al.: MAX 2-SAT with up to 108 qubits. New J. Phys. 16(4), 045006 (2014)

    Article  Google Scholar 

  15. Troels, R.F., et al.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)

    Article  Google Scholar 

  16. Hen, I., et al.: Probing for quantum speedup in spin glass problems with planted solutions (2015). arXiv preprint arXiv:1502.01663

  17. Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nature Commun. 5, 3243 (2014)

    Article  Google Scholar 

  18. Pudenz, K.L., Albash, T., Lidar, D.A.: Quantum annealing correction for random Ising problems. Phys. Rev. A 91, 042302 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen L. Pudenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pudenz, K.L. (2015). Quantum Computing Meets the Real World. In: Calude, C., Dinneen, M. (eds) Unconventional Computation and Natural Computation. UCNC 2015. Lecture Notes in Computer Science(), vol 9252. Springer, Cham. https://doi.org/10.1007/978-3-319-21819-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21819-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21818-2

  • Online ISBN: 978-3-319-21819-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics