Skip to main content

Nanomaterials for Diagnostic Imaging of the Brain

  • Chapter
  • First Online:
Biomedical Engineering: Frontier Research and Converging Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

  • 2346 Accesses

Abstract

Various brain diseases including Alzheimer’s disease, stroke, and cancer are major causes of death worldwide. Due to the notion that early diagnosis significantly increases success in treatments, several non-invasive bioimaging modalities such as MRI, CT, and PET are increasingly used to locate pathologic sites in the brain. To further enhance the quality of diagnostic imaging, efforts are incrementally made to couple imaging contrasts of interests to macromolecules or nanoparticles designed to cross over the brain-blood barrier and to bind to pathologic tissue. This chapter will therefore review such important emerging technologies for diagnostic imaging of brain and some preclinical and clinical success, so we can ultimately assist efforts to take diagnosis quality to the next level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzheimer’s Disease Facts and Figures 10(2) (2014)

    Google Scholar 

  2. Siegel, R., Ma, J., Zou, Z., Jemel, A.: Cancer statistics. CA-Cancer J. Clin. (2014)

    Google Scholar 

  3. Brenner, D., Elliston, C., Hall, E., Berdon, W.: Estimated Risks of Radiation - Induced Fatal Cancer from Pediatric CT. AJR. 176, 289–296 (2000)

    Article  Google Scholar 

  4. Wang, C., Cohan, R., Ellis, H., Adusumilli, S., Dunnick, N.: Frequency, Management, and Outcome of Extravasation of Nonionic Iodinated Contrast Medium in 69 657 Intravenous Injections 243(1), 80-87 (2007)

    Google Scholar 

  5. Hainfeld, J., Smilowitz, H., O’Connor, M., Dilmanian, F., Slatkin, D.: Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine 8(10), 1601–1609 (2013)

    Article  Google Scholar 

  6. Silva, A., Lee, J., Aoki, I., Korestsky, A.: Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed. 17, 532–543 (2004)

    Article  Google Scholar 

  7. Husson, B., Rodesch, G., Lasjuanias, P., Tardieu, M., Sebire, G.: Magnetic resonance angiography in childhood arterial brain infarcts a comparative study with contrast angiography. Stroke. 33, 1280–1285 (2002)

    Article  Google Scholar 

  8. Lin, A., Ross, B., Harris, K., Wong, W.: Efficacy of Proton Magnetic Resonance Spectroscopy in Neurological Diagnosis and Neurotherapeutic Decision Making. NeuroRx. 2(2), 197–214 (2005)

    Article  Google Scholar 

  9. Binder, J., Frost, J., Hammeke, T., Cox, R., Rao, S., Prieto, T.: Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging. J. Neurosci. 353-362 (1997)

    Google Scholar 

  10. Law, M., Yang, S., Babb, J., Knopp, E., Golfinos, J., Zagzag, D., et al.: Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am. J. Neuroradiol. 25(5), 746–755 (2004)

    Google Scholar 

  11. Herholz, K.: PET studies in dementia. Ann. Nucl. Med. 17(2), 79–89 (2003)

    Article  MATH  Google Scholar 

  12. Brindle, K.: New approaches for imaging tumor responses to treatment. Nature 8 (2008)

    Google Scholar 

  13. Ricci, P., Karis, J., Heiserman, J., Fram, E., Bice, A., Drayer, B.: Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? Am. J. Neuroradiol. 19, 407–413 (1998)

    Google Scholar 

  14. Chen, W.: Clinical Applications of PET in Brain Tumors. J. Nucl. Med. 48(9), 1468–1481 (2007)

    Article  Google Scholar 

  15. Chung, J., Kim, Y., Kim, S., Lee, Y., Paek, S., Yeo, J., et al.: Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur. J. Nucl. Med. 29, 176–182 (2002)

    Article  Google Scholar 

  16. Becherer, A., Karanikas, G., Szabó, M., Zettinig, G., Asenbaum, S., Marosi, C., et al.: Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur. J. Nucl. Med. Mol. Imaging 30(11), 1561–1567 (2003)

    Article  Google Scholar 

  17. Chen, W., Silverman, D.H.S., Delaloye, S., Czernin, J., Kamdar, N., Pope, W., et al.: 18F-FDOPA PET Imaging of Brain Tumors: Comparison Study with 18F-FDG PET and Evaluation of Diagnostic Accuracy. J. Nucl. Med. 47(6), 904–911 (2006)

    Google Scholar 

  18. Shields, A., Grierson, J., Dohmen, B., Machulla, H., Stayanoff, J., Lawhorn-Crews, J., et al.: Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 4(11), 1334–1336 (1998)

    Article  Google Scholar 

  19. Been, L., Suurmeijer, A.J., Cobben, D., Jager, P., Hoekstra, H., Elsinga, P.: [18F]FLT-PET in oncology: current status and opportunities. Eur. J. Nucl. Med. Mol. Imaging 31(12), 1659–1672 (2004)

    Article  Google Scholar 

  20. Boothman, D., Davis, T., Sahijdak, W.: Enhanced expression of thymidine kinase in human cells following ionizing radiation. Int. J. Radiat. Oncol. Bio. Phys. 30(2), 391–398 (1994)

    Article  Google Scholar 

  21. Chen, W., Cloughesy, T., Kamdar, N., Satyamurthy, N., Bergsneider, M., Liau, L., et al.: Imaging Proliferation in Brain Tumors with 18F-FLT PET: Comparison with 18F-FDG. J. Nucl. Med. 46, 945–952 (2005)

    Google Scholar 

  22. Mathis, C., Bacskai, B., Kajdasz, S., McLellan, M., Frosch, M., Hyman, B., et al.: A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett. 12(3), 295–298 (2002)

    Article  Google Scholar 

  23. Klunk, W., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, P., et al.: Imaging Brain Amyloid in Alzheimer’s Disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004)

    Article  Google Scholar 

  24. Bhojani, M.S., Van Dort, M., Rehemtulla, A., Ross, B.D.: Targeted Imaging and Therapy of Brain Cancer Using Theranostic Nanoparticles. Mol. Pharmaceutics 7(6), 1921–1929 (2010)

    Article  Google Scholar 

  25. Saito, R., Krauze, M., Bringas, J., Noble, C., McKnight, T., Jackson, P., et al.: Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp. Neurol. 196, 381–389 (2005)

    Article  Google Scholar 

  26. Ludermann, L., Hamm, B., Zimmer, C.: Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPA-enhanced magnetic resonance imaging. Magn. Reson. Imaging 18(10), 1201–1214 (2000)

    Article  Google Scholar 

  27. Gupta, A., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005)

    Article  Google Scholar 

  28. Lacor, P., Buniel, M., Chang, L., Fernandez, S., Gong, Y., Viola, K., et al.: Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J. Neurosci. 45, 10191–10200 (2004)

    Article  Google Scholar 

  29. Viola, K., Sbarboro, J., Sureka, R., De, M., Bicca, M., Wang, J., et al.: Towards non-invasive diagnostic imaging of early-stage Alzheimer’s disease. Nat. Nanotechnol. 10, 91–98 (2015)

    Article  Google Scholar 

  30. Liu, H., Hua, M., Yang, H., Huang, C., Chu, P., Wu, J., et al.: Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery. PNAS. 107(34), 15205–15210 (2010)

    Article  Google Scholar 

  31. Cheng, Y., Dai, Q., Morshed, R., Fan, X., Wegscheid, M., Wainwright, D., et al.: Blood-brain barrier permeable gold nanoparticles: An efficient delivery platform for enhanced malignant glioma therapy and imaging. Small. 10(24), 5137–5150 (2014)

    Google Scholar 

  32. Reddy, G., Bhojani, M., McConville, P., Moody, J., Moffat, B., Hall, D., et al.: Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors. Clin. Cancer. Res. 12(22), 6677–6686 (2006)

    Article  Google Scholar 

  33. Kircher, M., Mahmood, U., King, R., Weissleder, R., Josephson, L.: A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation. Cancer Res. 63, 8122–8125 (2003)

    Google Scholar 

  34. Veiseh, O., Sun, C., Gunn, J., Kohler, N., Gabikian, P., Lee, D., et al.: Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas. Nano Lett. 5(6), 1003–1008 (2005)

    Article  Google Scholar 

  35. Trehin, R., Figueiredo, J., Pettet, M., Weissleder, R., Josephson, L., Mahmood, U.: Fluorescent Nanoparticle Uptake for Brain Tumor Visualization. Neoplasia. 8(4), 302–311 (2006)

    Article  Google Scholar 

  36. Kircher, M., de la Zerda, A., Jokerst, J., Zavaleta, C., Kempen, P., Mittra, E., et al.: A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Ramen nanoparticle. Nat. Med. 18(5), 829–834 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjoon Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Qin, E., Kong, H. (2016). Nanomaterials for Diagnostic Imaging of the Brain. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics