Skip to main content

Dendritic Nanomaterials for Therapeutic and Diagnostic Applications

  • Chapter
  • First Online:
Biomedical Engineering: Frontier Research and Converging Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

  • 2372 Accesses

Abstract

Dendritic nanomaterials have attracted a great deal of scientific interest for use in various biomedical applications primarily due to their well-defined structure and capacity for multifunctionalization. In this chapter, we present a comprehensive overview of the recent advances in various dendrimers and their modified dendritic materials with a particular focus on their applications such as drug delivery, gene delivery, diagnostics and prognostics, and detoxification/prophylaxis. We also discuss the fundamentals of the biological interactions of dendritic nanomaterials in regard to non-specific cell interactions, multivalent binding, stimuli-responsive processes, and biodistribution. In addition, this chapter highlights the current drawbacks of dendrimers that have hindered their rapid clinical translation and introduce recent approaches to overcoming these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brannon-Peppas, L., Blanchette, J.O.: Nanoparticle and targeted systems for cancer therapy. Adv. Drug. Deliv. Rev. 56(11), 1649–1659 (2004). doi:10.1016/j.addr.2004.02.014

    Google Scholar 

  2. Mura, S., Couvreur, P.: Nanotheranostics for personalized medicine. Adv. Drug. Deliv. Rev. 64(13), 1394–1416 (2012). doi:10.1016/j.addr.2012.06.006

    Google Scholar 

  3. Chauhan, V.P., Jain, R.K.: Strategies for advancing cancer nanomedicine. Nat. Mater. 12(11), 958–962 (2013). doi:10.1038/nmat3792

    Google Scholar 

  4. Peer, D., Karp, J.M., Hong, S., FaroKHzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007). doi:10.1038/Nnano.2007.387

    Google Scholar 

  5. Doane, T.L., Burda, C.: The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical Society reviews 41(7), 2885–2911 (2012). doi:10.1039/c2cs15260f

    Google Scholar 

  6. Lee, D.E., Koo, H., Sun, I.C., Ryu, J.H., Kim, K., Kwon, I.C.: Multifunctional nanoparticles for multimodal imaging and theragnosis. Chemical Society reviews 41(7), 2656–2672 (2012). doi:10.1039/c2cs15261d

    Google Scholar 

  7. Ulery, B.D., Nair, L.S., Laurencin, C.T.: Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. Pt. B-Polym. Phys. 49(12), 832–864 (2011). doi:10.1002/Polb.22259

    Google Scholar 

  8. Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., Smith, P.: A New Class of Polymers - Starburst-Dendritic Macromolecules. Polym. J. 17(1), 117–132 (1985). doi:10.1295/Polymj.17.117

    Google Scholar 

  9. Tomalia, D.A., Naylor, A.M., Goddard, W.A.: Starburst Dendrimers - Molecular-Level Control of Size, Shape, Surface-Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angew. Chem. Int. Edit. 29(2), 138–175 (1990). doi:10.1002/Anie.199001381

    Google Scholar 

  10. Lee, C.C., MacKay, J.A., Frechet, J.M., Szoka, F.C.: Designing dendrimers for biological applications. Nat. Biotechnol. 23(12), 1517–1526 (2005). doi:10.1038/nbt1171

    Google Scholar 

  11. Pearson, R.M., Sunoqrot, S., Hsu, H.J., Bae, J.W., Hong, S.: Dendritic nanoparticles: the next generation of nanocarriers? Ther. Deliv. 3(8), 941–959 (2012)

    Google Scholar 

  12. Pearson, R.M., Hsu, H.J., Bugno, J., Hong, S.: Understanding nano-bio interactions to improve nanocarriers for drug delivery. MRS Bull. 39(3), 227–237 (2014). doi:10.1557/Mrs.2014.9

    Google Scholar 

  13. Percec, V., Wilson, D.A., Leowanawat, P., Wilson, C.J., Hughes, A.D., Kaucher, M.S., Hammer, D.A., Levine, D.H., Kim, A.J., Bates, F.S., Davis, K.P., Lodge, T.P., Klein, M.L., DeVane, R.H., Aqad, E., Rosen, B.M., Argintaru, A.O., Sienkowska, M.J., Rissanen, K., Nummelin, S., Ropponen, J.: Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes and Other Complex Architectures. Science 328(5981), 1009–1014 (2010). doi:10.1126/Science.1185547

    Google Scholar 

  14. Rosen, B.M., Wilson, C.J., Wilson, D.A., Peterca, M., Imam, M.R., Percec, V.: Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chemical reviews 109(11), 6275–6540 (2009). doi:10.1021/cr900157q

    Google Scholar 

  15. Wurm, F., Frey, H.: Linear-dendritic block copolymers: The state of the art and exciting perspectives. Prog. Polym. Sci. 36(1), 1–52 (2011). doi:10.1016/J.Progpolymsci.2000.07.009

    Google Scholar 

  16. Bugno, J., Hsu, H.-j., Hong, S.: Recent advances in targeted drug delivery approaches using dendritic polymers. Biomater. Sci. U.K. (2015). doi:10.1039/C4BM00351A

    Google Scholar 

  17. Esfand, R., Tomalia, D.A.: Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug. Discov. Today 6(8), 427–436 (2001). doi:10.1016/S1359-6446(01)01757-3

    Google Scholar 

  18. Baars, M.W.P.L., Karlsson, A.J., Sorokin, V., de Waal, B.F.W., Meijer, E.W.: Supramolecular modification of the periphery of dendrimers resulting in rigidity and functionality. Angew. Chem. Int. Edit. 39(23), 4262-+ (2000). doi:10.1002/1521-3773(20001201)39:23<4262:Aid-Anie4262>3.0.Co;2-Y

    Google Scholar 

  19. Majoros, I.J., Myc, A., Thomas, T., Mehta, C.B., Baker, J.R.: PAMAM dendrimer-based multifunctional conjugate for cancer therapy: Synthesis, characterization, and functionality. Biomacromolecules 7(2), 572–579 (2006). doi:10.1021/Bm0506142

    Google Scholar 

  20. Mecke, A., Lee, I., Baker Jr, J.R., Holl, M.M., Orr, B.G.: Deformability of poly(amidoamine) dendrimers. The European Physical Journal E., Soft. Matter. 14(1), 7–16 (2004). doi:10.1140/epje/i2003-10087-5

    Google Scholar 

  21. Hong, S., Leroueil, P.R., Majoros, I.J., Orr, B.G., Baker Jr, J.R., Banaszak Holl, M.M.: The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14(1), 107–115 (2007). doi:10.1016/j.chembiol.2006.11.015. S1074-5521(06)00471-6 [Pii]

    Google Scholar 

  22. Myung, J.H., Gajjar, K.A., Saric, J., Eddington, D.T., Hong, S.: Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells. Angew. Chem. Int. Edit. 50(49), 11769–11772 (2011). doi:10.1002/anie.201105508

    Google Scholar 

  23. Medina, S.H., El-Sayed, M.E.H.: Dendrimers as Carriers for Delivery of Chemotherapeutic Agents. Chemical reviews 109(7), 3141–3157 (2009). doi:10.1021/Cr900174j

    Google Scholar 

  24. Hawker, C.J., Frechet, J.M.J.: Preparation of Polymers with Controlled Molecular Architecture - a New Convergent Approach to Dendritic Macromolecules. J. Am. Chem. Soc. 112(21), 7638–7647 (1990). doi:10.1021/Ja00177a027

    Google Scholar 

  25. Pearson, R.M., Sunoqrot, S., H-j, H., Bae, J.W., Hong, S.: Dendritic nanoparticles: the next generation of nanocarriers? Ther. Deliv. In Press (2012). doi:10.4155/TDE.12.176

    Google Scholar 

  26. Whitesides, G.M., Mathias, J.P., Seto, C.T.: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254(5036), 1312–1319 (1991)

    Google Scholar 

  27. Qiu, L.Y., Bae, Y.H.: Polymer architecture and drug delivery. Pharm. Res. 23(1), 1–30 (2006). doi:10.1007/S11095-005-9046-2

    Google Scholar 

  28. Al-Jamal, K.T., Ramaswamy, C., Florence, A.T.: Supramolecular structures from dendrons and dendrimers. Adv. Drug. Deliv. Rev. 57(15), 2238–2270 (2005). doi:10.1016/J.Addr.2005.09.015

    Google Scholar 

  29. Bae, J.W., Pearson, R.M., Patra, N., Sunoqrot, S., Vukovic, L., Kral, P., Hong, S.: Dendron-mediated self-assembly of highly PEGylated block copolymers: a modular nanocarrier platform. Chem. Commun. 47(37), 10302–10304 (2011). doi:10.1039/c1cc14331j

    Google Scholar 

  30. Tian, L., Hammond, P.T.: Comb-dendritic block copolymers as tree-shaped macromolecular amphiphiles for nanoparticle self-assembly. Chem. Mat. 18(17), 3976–3984 (2006). doi:10.1021/Cm060232i

    Google Scholar 

  31. Poon, Z., Lee, J.A., Huang, S.W., Prevost, R.J., Hammond, P.T.: Highly stable, ligand-clustered “patchy” micelle nanocarriers for systemic tumor targeting. Nanomed. – Nanotechnol. Biol. Med. 7(2), 201–209 (2011). doi:10.1016/J.Nano.2010.07.008

    Google Scholar 

  32. Maeda, H., Bharate, G.Y., Daruwalla, J.: Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 71(3), 409–419 (2009). doi:10.1016/J.Ejpb.2008.11.010

    Google Scholar 

  33. Zhang, L.F., Chan, J.M., Gu, F.X., Rhee, J.W., Wang, A.Z., Radovic-Moreno, A.F., Alexis, F., Langer, R., Farokhzad, O.C.: Self-assembled lipid-polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano. 2(8), 1696–1702 (2008). doi:10.1021/Nn800275r

    Google Scholar 

  34. Jin, S.E., Bae, J.W., Hong, S.: Multiscale observation of biological interactions of nanocarriers: from nano to macro. Microscopy research and technique 73(9), 813–823 (2010). doi:10.1002/jemt.20847

    Google Scholar 

  35. Hu, C.M., Aryal, S., Zhang, L.: Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1(2), 323–334 (2010)

    Google Scholar 

  36. Sunoqrot, S., Bae, J.W., Jin, S.E., Ryan, M.P., Liu, Y., Hong, S.: Kinetically controlled cellular interactions of polymer-polymer and polymer-liposome nanohybrid systems. Bioconjugate Chem. 22(3), 466–474 (2011). doi:10.1021/bc100484t

    Google Scholar 

  37. Mora-Huertas, C.E., Fessi, H., Elaissari, A.: Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 385(1–2), 113–142 (2010). doi:10.1016/j.ijpharm.2009.10.018

    Google Scholar 

  38. Sunoqrot, S., Bae, J.W., Pearson, R.M., Shyu, K., Liu, Y., Kim, D.H., Hong, S.: Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules 13(4), 1223–1230 (2012). doi:10.1021/bm300316n

    Google Scholar 

  39. Sunoqrot, S., Bugno, J., Lantvit, D., Burdette, J.E., Hong, S.: Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J. Control Release 191, 115–122 (2014). doi:10.1016/j.jconrel.2014.05.006

    Google Scholar 

  40. Ko, Y.T., Bhattacharya, R., Bickel, U.: Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J. Control Release 133(3), 230–237 (2009). doi:10.1016/J.Jconrel.2008.10.013

    Google Scholar 

  41. Discher, B.M., Won, Y.Y., Ege, D.S., Lee, J.C.M., Bates, F.S., Discher, D.E., Hammer, D.A.: Polymersomes: Tough vesicles made from diblock copolymers. Science 284(5417), 1143–1146 (1999). doi:10.1126/Science.284.5417.1143

    Google Scholar 

  42. Zhang, S.D., Sun, H.J., Hughes, A.D., Draghici, B., Lejnieks, J., Leowanawat, P., Bertin, A., De Leon, L.O., Kulikov, O.V., Chen, Y.C., Pochan, D.J., Heiney, P.A., Percec, V.: “Single-Single” Amphiphilic Janus Dendrimers Self-Assemble into Uniform Dendrimersomes with Predictable Size. ACS Nano. 8(2), 1554–1565 (2014). doi:10.1021/Nn405790x

    Google Scholar 

  43. Leroueil, P.R., Hong, S.Y., Mecke, A., Baker, J.R., Orr, B.G., Holl, M.M.B.: Nanoparticle interaction with biological membranes: Does nanotechnology present a janus face? Accounts Chem. Res. 40(5), 335–342 (2007). doi:10.1021/Ar600012y

    Google Scholar 

  44. Hong, S.P., Bielinska, A.U., Mecke, A., Keszler, B., Beals, J.L., Shi, X.Y., Balogh, L., Orr, B.G., Baker, J.R., Holl, M.M.B.: Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: Hole formation and the relation to transport. Bioconjug. Chem. 15(4), 774–782 (2004). doi:10.1021/Bc049962b

    Google Scholar 

  45. Hong, S., Rattan, R., Majoros, I.J., Mullen, D.G., Peters, J.L., Shi, X., Bielinska, A.U., Blanco, L., Orr, B.G., Baker Jr, J.R., Holl, M.M.: The role of ganglioside GM1 in cellular internalization mechanisms of poly(amidoamine) dendrimers. Bioconjug. Chem. 20(8), 1503–1513 (2009). doi:10.1021/bc900029k

    Google Scholar 

  46. Chithrani, B.D., Ghazani, A.A., Chan, W.C.W.: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano. Lett. 6(4), 662–668 (2006). doi:10.1021/Nl052396o

    Google Scholar 

  47. Singh, A.K., Kasinath, B.S., Lewis, E.J.: Interaction of polycations with cell-surface negative charges of epithelial cells. Biochim. Biophys. Acta. 1120(3), 337–342 (1992)

    Google Scholar 

  48. Maiti, P.K., Cagin, T., Lin, S.T., Goddard, W.A.: Effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules 38(3), 979–991 (2005). doi:10.1021/Ma0491681

    Google Scholar 

  49. Mammen, M., Choi, S.K., Whitesides, G.M.: Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edit. 37(20), 2755–2794 (1998)

    Google Scholar 

  50. Mourez, M., Kane, R.S., Mogridge, J., Metallo, S., Deschatelets, P., Sellman, B.R., Whitesides, G.M., Collier, R.J.: Designing a polyvalent inhibitor of anthrax toxin. Nat. Biotechnol. 19(10), 958–961 (2001)

    Google Scholar 

  51. Lee, R.T., Lee, Y.C.: Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconjugate J. 17(7–9), 543–551 (2000)

    Google Scholar 

  52. Kiessling, L.L., Gestwicki, J.E., Strong, L.E.: Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Edit. 45(15), 2348–2368 (2006). doi:10.1002/Anie.200502794

    Google Scholar 

  53. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84(7), 783–794 (2003). doi:10.1002/Bit.10842

    Google Scholar 

  54. Bertozzi, C.R., Kiessling, L.L.: Chemical Glycobiology. Science 291(5512), 2357–2364 (2001). doi:10.1126/science.1059820

    Google Scholar 

  55. Sieben, C., Kappel, C., Zhu, R., Wozniak, A., Rankl, C., Hinterdorfer, P., Grubmller, H., Herrmann, A.: Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl. Acad. Sci. U.S.A. (2012). doi:10.1073/pnas.1120265109

    Google Scholar 

  56. Vance, D., Martin, J., Patke, S., Kane, R.S.: The design of polyvalent scaffolds for targeted delivery. Adv. Drug. Deliv. Rev. 61(11), 931–939 (2009). doi:10.1016/j.addr.2009.06.002. S0169-409X(09)00219-1 [pii]

    Google Scholar 

  57. Pavan, G.M., Mintzer, M.A., Simanek, E.E., Merkel, O.M., Kissel, T., Danani, A.: Computational Insights into the Interactions between DNA and siRNA with “Rigid” and “Flexible” Triazine Dendrimers. Biomacromolecules 11(3), 721–730 (2010). doi:10.1021/Bm901298t

    Google Scholar 

  58. Page, D., Aravind, S., Roy, R.: Synthesis and lectin binding properties of dendritic mannopyranoside. Chem. Commun. 16, 1913–1914 (1996)

    Google Scholar 

  59. Ashton, P.R., Hounsell, E.F., Jayaraman, N., Nilsen, T.M., Spencer, N., Stoddart, J.F., Young, M.: Synthesis and biological evaluation of alpha-D-mannopyranoside-containing dendrimers. J. Org. Chem. 63(10), 3429–3437 (1998)

    Google Scholar 

  60. Rele, S.M., Cui, W.X., Wang, L.C., Hou, S.J., Barr-Zarse, G., Taton, D., Gnanou, Y., Esko, J.D., Chaikof, E.L.: Dendrimer-like PEO glycopolymers exhibit anti-inflammatory properties. J. Am. Chem. Soc. 127(29), 10132–10133 (2005). doi:10.1021/Ja0511974

    Google Scholar 

  61. Shewmake, T.A., Solis, F.J., Gillies, R.J., Caplan, M.R.: Effects of linker length and flexibility on multivalent targeting. Biomacromolecules 9(11), 3057–3064 (2008). doi:10.1021/bm800529b

    Google Scholar 

  62. Kim, Y., Lee, J.H., Ryu, J., Kim, D.J.: Multivalent & multifunctional ligands to beta-amyloid. Current Pharmaceutical Design 15(6), 637–658 (2009)

    Google Scholar 

  63. Kane, R.S.: Thermodynamics of multivalent interactions: influence of the linker. Langmuir 26(11), 8636–8640 (2010). doi:10.1021/la9047193

    Google Scholar 

  64. Pearson, R.M., Patra, N., Hsu, H.J., Uddin, S., Kral, P., Hong, S.: Positively Charged Dendron Micelles Display Negligible Cellular Interactions. ACS Macro Letters 2(1), 77–81 (2013). doi:10.1021/mz300533w

    Google Scholar 

  65. Hsu, H.J., Sen, S., Pearson, R.M., Uddin, S., Kral, P., Hong, S.: Poly(ethylene glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles. Macromolecules 47(19), 6911–6918 (2014). doi:10.1021/Ma501258c

    Google Scholar 

  66. Burton, G.J.: Evidence for non-linear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies. Vision. Res. 13(7), 1211–1225 (1973)

    Google Scholar 

  67. Conner, S.D., Schmid, S.L.: Regulated portals of entry into the cell. Nature 422(6927), 37–44 (2003). doi:10.1038/Nature01451

    Google Scholar 

  68. Kojima, C.: Design of stimuli-responsive dendrimers. Expert Opin. Drug Deliv. 7(3), 307–319 (2010). doi:10.1517/17425240903530651

    MathSciNet  Google Scholar 

  69. Gillies, E.R., Jonsson, T.B., Frechet, J.M.J.: Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 126(38), 11936–11943 (2004). doi:10.1021/Ja0463738

    Google Scholar 

  70. Stuart, M.A.C., Huck, W.T.S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., Minko, S.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010). doi:10.1038/Nmat2614

    Google Scholar 

  71. Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliver Rev 58(15), 1655–1670 (2006). doi:10.1016/J.Addr.2006.09.020

    Google Scholar 

  72. Benjaminsen, R.V., Mattebjerg, M.A., Henriksen, J.R., Moghimi, S.M., Andresen, T.L.: The Possible “Proton Sponge” Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH. Mol. Ther. 21(1), 149–157 (2013). doi:10.1038/mt.2012.185

    Google Scholar 

  73. Liu, Y., Bryantsev, V.S., Diallo, M.S., Goddard, W.A.: PAMAM Dendrimers Undergo pH Responsive Conformational Changes without Swelling. J. Am. Chem. Soc. - + 131(8), 2798 (2009). doi:10.1021/Ja8100227

    Google Scholar 

  74. Vaupel, P., Kallinowski, F., Okunieff, P.: Blood-Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human-Tumors - a Review. Cancer Res. 49(23), 6449–6465 (1989)

    Google Scholar 

  75. Pistolis, G., Malliaris, A., Tsiourvas, D., Paleos, C.M.: Poly(propyleneimine) dendrimers as pH-sensitive controlled-release systems. Chem.-Eur. J. 5(5), 1440–1444 (1999). doi:10.1002/(Sici)1521-3765(19990503)5:5<1440:Aid-Chem1440>3.0.Co;2-M

    Google Scholar 

  76. Kaminskas, L.M., Boyd, B.J., Porter, C.J.H.: Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine U.k. 6(6), 1063–1084 (2011). doi:10.2217/Nnm.11.67

    Google Scholar 

  77. Wijagkanalan, W., Kawakami, S., Hashida, M.: Designing Dendrimers for Drug Delivery and Imaging: Pharmacokinetic Considerations. Pharm. Res. 28(7), 1500–1519 (2011). doi:10.1007/S11095-010-0339-8

    Google Scholar 

  78. Kobayashi, H., Kawamoto, S., Saga, T., Sato, N., Hiraga, A., Konishi, J., Togashi, K., Brechbiel, M.W.: Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: Reference to pharmacokinetic properties of dendrimer-based MR contrast agents. J. Magn. Reson. Imaging 14(6), 705–713 (2001). doi:10.1002/Jmri.10025

    Google Scholar 

  79. Kobayashi, H., Sato, N., Hiraga, A., Saga, T., Nakamoto, Y., Ueda, H., Konishi, J., Togashi, K., Brechbiel, M.W.: 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn. Reson. Med. 45(3), 454–460 (2001). doi:10.1002/1522-2594(200103)45:3<454:Aid-Mrm1060>3.0.Co;2-M

    Google Scholar 

  80. Soo Choi, H., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Itty Ipe, B., Bawendi, M.G., Frangioni, J.V.: Renal clearance of quantum dots. Nat. Biotech. 25(10), 1165–1170 (2007). doi:10.1038/nbt1340

    Google Scholar 

  81. Walkey, C.D., Olsen, J.B., Guo, H., Emili, A., Chan, W.C.: Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134(4), 2139–2147 (2012). doi:10.1021/ja2084338

    Google Scholar 

  82. Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J.W., Meijer, E.W., Paulus, W., Duncan, R.: Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled polyamidoamine dendrimers in vivo. J. Control Release 68(2), 299–302 (2000). doi:10.1016/S0168-3659(00)00283-2

    Google Scholar 

  83. Boyd, B.J., Kaminskas, L.M., Karellas, P., Krippner, G., Lessene, R., Porter, C.J.H.: Cationic poly-L-lysine dendrimers: Pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Mol. Pharmaceut. 3(5), 614–627 (2006). doi:10.1021/Mp060032e

    Google Scholar 

  84. Duncan, R., Izzo, L.: Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev. 57(15), 2215–2237 (2005). doi:10.1016/J.Addr.2004.09.019

    Google Scholar 

  85. Satija, J., Gupta, U., Jain, N.K.: Pharmaceutical and biomedical potential of surface engineered dendrimers. Crit. Rev. Ther. Drug. Carr. Syst. 24(3), 257–306 (2007)

    Google Scholar 

  86. Wang, W., Xiong, W., Zhu, Y.H., Xu, H.B., Yang, X.L.: Protective Effect of PEGylation Against Poly(amidoamine) Dendrimer-Induced Hemolysis of Human Red Blood Cells. J. Biomed. Mater. Res. B. 93B(1), 59–64 (2010). doi:10.1002/Jbm.B.31558

    Google Scholar 

  87. Pryor, J.B., Harper, B.J., Harper, S.L.: Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish. Int. J. Nanomed. 9, 1947–1956 (2014). doi:10.2147/Ijn.S60220

    Google Scholar 

  88. Owens, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharmaceut. 307(1), 93–102 (2006). doi:10.1016/J.Ijpharm.2005.10.010

    Google Scholar 

  89. Jain, K., Kesharwani, P., Gupta, U., Jain, N.K.: Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharmaceut. 394(1–2), 122–142 (2010). doi:10.1016/J.Ijpharm.2010.04.027

    Google Scholar 

  90. Kojima, C., Regino, C., Umeda, Y., Kobayashi, H., Kono, K.: Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimers. Int. J. Pharmaceut. 383(1–2), 293–296 (2010). doi:10.1016/J.Ijpharm.2009.09.015

    Google Scholar 

  91. Ross, J.F., Chaudhuri, P.K., Ratnam, M.: Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic. and clinical implications Cancer 73(9), 2432–2443 (1994). doi:10.1002/1097-0142(19940501)73:9<2432:aid-cncr2820730929>3.0.co;2-s

    Google Scholar 

  92. Quintana, A., Raczka, E., Piehler, L., Lee, I., Myc, A., Majoros, I., Patri, A.K., Thomas, T., Mule, J., Baker, J.R.: Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 19(9), 1310–1316 (2002). doi:10.1023/A:1020398624602

    Google Scholar 

  93. Kukowska-Latallo, J.F., Candido, K.A., Cao, Z.Y., Nigavekar, S.S., Majoros, I.J., Thomas, T.P., Balogh, L.P., Khan, M.K., Baker, J.R.: Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65(12), 5317–5324 (2005)

    Google Scholar 

  94. Singh, P., Gupta, U., Asthana, A., Jain, N.K.: Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chem. 19(11), 2239–2252 (2008). doi:10.1021/bc800125u

    Google Scholar 

  95. Lom, B., Healy, K.E., Hockberger, P.E.: A Versatile Technique for Patterning Biomolecules onto Glass Coverslips. J. Neurosci. Methods 50(3), 385–397 (1993)

    Google Scholar 

  96. Jung, H., Kulkarni, R., Collier, C.P.: Dip-pen nanolithography of reactive alkoxysilanes on glass. J. Am. Chem. Soc. 125(40), 12096–12097 (2003). doi:10.1021/Ja0363720

    Google Scholar 

  97. Li, Y., He, H., Jia, X.R., Lu, W.L., Lou, J.N., Wei, Y.: A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials 33(15), 3899–3908 (2012). doi:10.1016/J.Biomaterials.2012.02.004

    Google Scholar 

  98. Qiao, H.Z., Li, J., Wang, Y., Ping, Q.N., Wang, G.J., Gu, X.C.: Synthesis and characterization of multi-functional linear-dendritic block copolymer for intracellular delivery of antitumor drugs. Int. J. Pharmaceut. 452(1–2), 363–373 (2013). doi:10.1016/J.Ijpharm.05.003

    Google Scholar 

  99. Zhou, Z.Y., D’Emanuele, A., Attwood, D.: Solubility enhancement of paclitaxel using a linear-dendritic block copolymer. Int. J. Pharmaceut. 452(1–2), 173–179 (2013). doi:10.1016/J.Ijpharm.2013.04.075

    Google Scholar 

  100. Xiao, K., Li, Y.P., Lee, J.S., Gonik, A.M., Dong, T., Fung, G., Sanchez, E., Xing, L., Cheng, H.R., Luo, J.T., Lam, K.S.: “OA02” Peptide Facilitates the Precise Targeting of Paclitaxel- Loaded Micellar Nanoparticles to Ovarian Cancer In Vivo. Cancer Res. 72(8), 2100–2110 (2012). doi:10.1158/0008-5472.Can-11-3883

    Google Scholar 

  101. Yang, Y., Pearson, R.M., Lee, O., Lee, C.W., Chatterton, R.T., Khan, S.A., Hong, S.: Dendron-Based Micelles for Topical Delivery of Endoxifen: A Potential Chemo- Preventive Medicine for Breast Cancer. Adv. Funct. Mater. 24(17), 2442–2449 (2014). doi:10.1002/Adfm.201303253

    Google Scholar 

  102. Yang, Y., Bugno, J., Hong, S.: Nanoscale polymeric penetration enhancers in topical drug delivery. Polym. Chem. U.k. 4(9), 2651–2657 (2013). doi:10.1039/C3py00049d

    Google Scholar 

  103. Poon, Z., Chen, S., Engler, A.C., Lee, H.I., Atas, E., von Maltzahn, G., Bhatia, S.N., Hammond, P.T.: Ligand-Clustered “Patchy” Nanoparticles for Modulated Cellular Uptake and In Vivo Tumor Targeting. Angew. Chem. Int. Edit. 49(40), 7266–7270 (2010). doi:10.1002/Anie.201003445

    Google Scholar 

  104. Turturro, S., Sunoqrot, S., Ying, H., Hong, S., Yue, B.Y.: Sustained release of matrix metalloproteinase-3 to trabecular meshwork cells using biodegradable PLGA microparticles. Mol. Pharm. 10(8), 3023–3032 (2013). doi:10.1021/mp4001052

    Google Scholar 

  105. Kim, J.H., Lee, E., Park, J.S., Kataoka, K., Jang, W.D.: Dual stimuli-responsive dendritic-linear block copolymers. Chem. Commun. 48(30), 3662–3664 (2012). doi:10.1039/C2cc17205d

    Google Scholar 

  106. Azagarsamy, M.A., Yesilyurt, V., Thayumanavan, S.: Disassembly of Dendritic Micellar Containers Due to Protein Binding. J. Am. Chem. Soc. 132(13), 4550 (2010). doi:10.1021/Ja100746d

    Google Scholar 

  107. Fauci, A.S.: The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239(4840), 617–622 (1988)

    Google Scholar 

  108. Kim, S., Ikeuchi, K., Groopman, J., Baltimore, D.: Factors affecting cellular tropism of human immunodeficiency virus. J. Virol. 64(11), 5600–5604 (1990)

    Google Scholar 

  109. Steinhauer, D.A.: Role of Hemagglutinin Cleavage for the Pathogenicity of Influenza Virus. Virology 258(1), 1–20 (1999). doi:10.1006/viro.1999.9716

    MathSciNet  Google Scholar 

  110. Glover, D.J., Lipps, H.J., Jans, D.A.: Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 6(4), 299-U229 (2005). doi:10.1038/Nrg1577

    Google Scholar 

  111. Pack, D.W., Hoffman, A.S., Pun, S., Stayton, P.S.: Design and development of polymers for gene delivery. Nat. Rev. Drug. Discov. 4(7), 581–593 (2005). doi:10.1038/Nrd1775

    Google Scholar 

  112. Khalil, I.A., Kogure, K., Akita, H., Harashima, H.: Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58(1), 32–45 (2006). doi:10.1124/Pr.58.1.8

    Google Scholar 

  113. Qin, L.H., Pahud, D.R., Ding, Y.Z., Bielinska, A.U., Kukowska-Latallo, J.F., Baker, J.R., Bromberg, J.S.: Efficient transfer of genes into murine cardiac grafts by starburst polyamidoamine dendrimers. Hum. Gene. Ther. 9(4), 553–560 (1998). doi:10.1089/Hum.1998.9.4-553

    Google Scholar 

  114. Bielinska, A.U., KukowskaLatallo, J.F., Baker, J.R.: The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochim. Biophys. Acta.-Gene. Struct. Expression 1353(2), 180–190 (1997). doi:10.1016/S0167-4781(97)00069-9

    Google Scholar 

  115. Haensler, J., Szoka, F.C.: Polyamidoamine Cascade Polymers Mediate Efficient Transfection of Cells in Culture. Bioconjug. Chem. 4(5), 372–379 (1993). doi:10.1021/Bc00023a012

    Google Scholar 

  116. Whitehead, K.A., Langer, R., Anderson, D.G.: Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug. Discov. 8(2), 129–138 (2009). doi:10.1038/nrd2742

    Google Scholar 

  117. Chen, W., Turro, N.J., Tomalia, D.A.: Using ethidium bromide to probe the interactions between DNA and dendrimers. Langmuir 16(1), 15–19 (2000). doi:10.1021/La981429v

    Google Scholar 

  118. Tang, Y., Li, Y.B., Wang, B., Lin, R.Y., van Dongen, M., Zurcher, D.M., Gu, X.Y., Holl, M.M.B., Liu, G., Qi, R.: Efficient in Vitro siRNA Delivery and Intramuscular Gene Silencing Using PEG-Modified PAMAM Dendrimers. Mol. Pharmaceut. 9(6), 1812–1821 (2012). doi:10.1021/Mp3001364

    Google Scholar 

  119. Patil, M.L., Zhang, M., Minko, T.: Multifunctional Triblock Nanocarrier (PAMAM-PEG-PLL) for the Efficient Intracellular siRNA Delivery and Gene Silencing. ACS Nano. 5(3), 1877–1887 (2011). doi:10.1021/Nn102711d

    Google Scholar 

  120. Jevprasesphant, R., Penny, J., Jalal, R., Attwood, D., McKeown, N.B., D’Emanuele, A.: The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 252(1–2), 263–266 (2003)

    Google Scholar 

  121. Brunner, K., Harder, J., Halbach, T., Willibald, J., Spada, F., Gnerlich, F., Sparrer, K., Beil, A., Mockl, L., Brauchle, C., Conzelmann, K.K., Carell, T.: Cell-Penetrating and Neurotargeting Dendritic siRNA Nanostructures. Angew. Chem. 54(6), 1946–1949 (2015). doi:10.1002/anie.201409803

    Google Scholar 

  122. Shah, V., Taratula, O., Garbuzenko, O.B., Taratula, O.R., Rodriguez-Rodriguez, L., Minko, T.: Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research 19(22), 6193–6204 (2013). doi:10.1158/1078-0432.CCR-13-1536

    Google Scholar 

  123. Wood, K.C., Little, S.R., Langer, R., Hammond, P.T.: A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. Angew. Chem. 44(41), 6704–6708 (2005). doi:10.1002/Anie.200502152

    Google Scholar 

  124. Yang, B., Sun, Y.X., Yi, W.J., Yang, J., Liu, C.W., Cheng, H., Feng, J., Zhang, X.Z., Zhuo, R.X.: A linear-dendritic cationic vector for efficient DNA grasp and delivery. Acta. Biomater. 8(6), 2121–2132 (2012). doi:10.1016/J.Actbio.2012.02.013

    Google Scholar 

  125. Langereis, S., Dirksen, A., Hackeng, T.M., van Genderen, M.H.P., Meijer, E.W.: Dendrimers and magnetic resonance imaging. New J. Chem. 31(7), 1152–1160 (2007). doi:10.1039/B616960k

    Google Scholar 

  126. Kobayashi, H., Brechbiel, M.W.: Nano-sized MRI contrast agents with dendrimer cores. Adv. Drug. Deliver Rev. 57(15), 2271–2286 (2005). doi:10.1016/J.Addr.2005.09.016

    Google Scholar 

  127. Venditto, V.J., Regino, C.A.S., Brechbiel, M.W.: PAMAM dendrimer based macromolecules as improved contrast agents. Mo. Pharmaceut. 2(4), 302–311 (2005). doi:10.1021/Mp050019e

    Google Scholar 

  128. Villaraza, A.J.L., Bumb, A., Brechbiel, M.W.: Macromolecules, Dendrimers, and Nanomaterials in Magnetic Resonance Imaging: The Interplay between Size, Function, and Pharmacokinetics. Chem. Rev. 110(5), 2921–2959 (2010). doi:10.1021/Cr900232t

    Google Scholar 

  129. Kobayashi, H., Jo, S.K., Kawamoto, S., Yasuda, H., Hu, X., Knopp, M.V., Brechbiel, M.W., Choyke, P.L., Star, R.A.: Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J. Magn. Reson. Imaging 20(3), 512–518 (2004). doi:10.1002/jmri.20147

    Google Scholar 

  130. Swanson, S.D., Kukowska-Latallo, J.F., Patri, A.K., Chen, C.Y., Ge, S., Cao, Z.Y., Kotlyar, A., East, A.T., Baker, J.R.: Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int. J. Nanomed. 3(2), 201–210 (2008)

    Google Scholar 

  131. Zhang, W.L., Li, N., Huang, J., Yu, J.H., Wang, D.X., Li, Y.P., Liu, S.Y.: Gadolinium-Conjugated FA-PEG-PAMAM-COOH Nanoparticles as Potential Tumor-Targeted Circulation-Prolonged Macromolecular MRI Contrast Agents. J. Appl. Polym. Sci. 118(3), 1805–1814 (2010). doi:10.1002/App.32494

    Google Scholar 

  132. Strable, E., Bulte, J.W.M., Moskowitz, B., Vivekanandan, K., Allen, M., Douglas, T.: Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mat. 13(6), 2201–2209 (2001). doi:10.1021/Cm010125i

    Google Scholar 

  133. Stears, R.L., Getts, R.C., Gullans, S.R.: A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol. Genomics 3(2), 93–99 (2000)

    Google Scholar 

  134. Song, X.D., Swanson, B.I.: Direct, ultrasensitive, and selective optical detection of protein toxins using multivalent interactions. Anal. Chem. 71(11), 2097–2107 (1999)

    Google Scholar 

  135. Angenendt, P., Glokler, J., Sobek, J., Lehrach, H.: Cahill DJ (2003) Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. J. Chromatogr. A 1–2, 97–104 (1009)

    Google Scholar 

  136. Haes, A.J., Van Duyne, R.P.: A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124(35), 10596–10604 (2002). doi:10.1021/Ja020393x

    Google Scholar 

  137. Woller, E.K., Walter, E.D., Morgan, J.R., Singel, D.J., Cloninger, M.J.: Altering the strength of lectin binding interactions and controlling the amount of lectin clustering using mannose/hydroxyl-functionalized dendrimers. J. Am. Chem. Soc. 125(29), 8820–8826 (2003). doi:10.1021/ja0352496

    Google Scholar 

  138. Myung, J.H., Gajjar, K.A., Han, Y.E., Hong, S.P.: The role of polymers in detection and isolation of circulating tumor cells. Polym. Chem. U.k. 3(9), 2336–2341 (2012). doi:10.1039/C2py20420g

    Google Scholar 

  139. Benters, R., Niemeyer, C.M., Wohrle, D.: Dendrimer-activated-solid supports for nucleic acid and protein microarrays. ChemBioChem 2(9), 686–694 (2001)

    Google Scholar 

  140. Myung, J.H., Gajjar, K.A., Chen, J., Molokie, R.E., Hong, S.: Differential detection of tumor cells using a combination of cell rolling, multivalent binding, and multiple antibodies. Anal. Chem. 86(12), 6088–6094 (2014). doi:10.1021/ac501243a

    Google Scholar 

  141. Han, H.J., Kannan, R.M., Wang, S.X., Mao, G.Z., Kusanovic, J.P., Romero, R.: Multifunctional Dendrimer-Templated Antibody Presentation on Biosensor Surfaces for Improved Biomarker Detection. Adv. Funct. Mater. 20(3), 409–421 (2010). doi:10.1002/Adfm.200901293

    Google Scholar 

  142. Lundgren, A., Hed, Y., Oeberg, K., Sellborn, A., Fink, H., Lowenhielm, P., Kelly, J., Malkoch, M., Berglin, M.: Self-Assembled Arrays of Dendrimer-Gold-Nanoparticle Hybrids for Functional Cell Studies. Angew. Chem. Int. Edit. 50(15), 3450–3453 (2011). doi:10.1002/Anie.201006544

    Google Scholar 

  143. Benhabbour, S.R., Sheardown, H., Adronov, A.: Cell adhesion and proliferation on hydrophilic dendritically modified surfaces. Biomaterials 29(31), 4177–4186 (2008). doi:10.1016/J.Biomaterials.2008.07.016

    Google Scholar 

  144. Zhang, L., Zou, B., Dong, D., Huo, F.W., Zhang, X., Chi, L.F., Jiang, L.: Self-assembled monolayers of new dendron-thiols: manipulation of the patterned surface and wetting properties. Chem. Commun. 19, 1906–1907 (2001). doi:10.1039/B103903m

    Google Scholar 

  145. Zhang, L., Huo, F.W., Wang, Z.Q., Wu, L.X., Zhang, X., Hoppener, S., Chi, L.F., Fuchs, H., Zhao, J.W., Niu, L., Dong, S.J.: Investigation into self-assembled monolayers of a polyether dendron thiol: Chemisorption, kinetics, and patterned surface. Langmuir 16(8), 3813–3817 (2000). doi:10.1021/La990923b

    Google Scholar 

  146. Chechik, V., Schonherr, H., Vancso, G.J., Stirling, C.J.M.: Self-assembled monolayers of branched thiols and disulfides on gold: Surface coverage, order and chain orientation. Langmuir 14(11), 3003–3010 (1998). doi:10.1021/La971090x

    Google Scholar 

  147. Oberg, K., Ropponen, J., Kelly, J., Lowenhielm, P., Berglin, M., Malkoch, M.: Templating Gold Surfaces with Function: A Self-Assembled Dendritic Monolayer Methodology Based on Monodisperse Polyester Scaffolds. Langmuir 29(1), 456–465 (2013). doi:10.1021/La3041314

    Google Scholar 

  148. Polcyn, P., Jurczak, M., Rajnisz, A., Solecka, J., Urbanczyk-Lipkowska, Z.: Design of Antimicrobially Active Small Amphiphilic Peptide Dendrimers. Molecules 14(10), 3881–3905 (2009). doi:10.3390/Molecules14103881

    Google Scholar 

  149. Cheng, Y.Y., Qu, H., Ma, M.L., Xu, Z.H., Xu, P., Fang, Y.J.: Xu TW (2007) Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: An in vitro study. Eur. J. Med. Chem. 42(7), 1032–1038 (2006). doi:10.1016/J.Ejmech.12.035

    Google Scholar 

  150. Mishra, M.K., Kotta, K., Hali, M., Wykes, S., Gerard, H.C., Hudson, A.P., Whittum-Hudson, J.A., Kannan, R.M.: PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomed-Nanotechnol Biol Med 7(6), 935–944 (2011). doi:10.1016/J.Nano.2011.04.008

    Google Scholar 

  151. Reuter, J.D., Myc, A., Hayes, M.M., Gan, Z.H., Roy, R., Qin, D.J., Yin, R., Piehler, L.T., Esfand, R., Tomalia, D.A., Baker, J.R.: Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. Bioconjugate Chem. 10(2), 271–278 (1999). doi:10.1021/Bc980099n

    Google Scholar 

  152. Landers, J.J., Cao, Z., Lee, I., Piehler, L.T., Myc, P.P., Myc, A., Hamouda, T., Galecki, A.T., Baker Jr, J.R.: Prevention of influenza pneumonitis by sialic Acid-conjugated dendritic polymers. J. Infect. Dis. 186(9), 1222–1230 (2002). doi:10.1086/344316

    Google Scholar 

  153. Kensinger, R.D., Catalone, B.J., Krebs, F.C., Wigdahl, B., Schengrund, C.L.: Novel polysulfated galactose-derivatized dendrimers as binding antagonists of human immunodeficiency virus type 1 infection. Antimicrob. Agents Chemother. 48(5), 1614–1623 (2004). doi:10.1128/Aac.48.5.1614-1623.2004

    Google Scholar 

  154. Rupp, R., Rosenthal, S.L., Stanberry, L.R.: VivaGel (SPL7013 Gel): a candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine 2(4), 561–566 (2007)

    Google Scholar 

  155. Telwatte, S., Moore, K., Johnson, A., Tyssen, D., Sterjovski, J., Aldunate, M., Gorry, P.R., Ramsland, P.A., Lewis, G.R., Paull, J.R., Sonza, S., Tachedjian, G.: Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. Antiviral Reserch 90(3), 195–199 (2011). doi:10.1016/j.antiviral.2011.03.186

    Google Scholar 

  156. Zhao, H., Li, J.R., Xi, F., Jiang, L.: Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS Lett. 563(1–3), 241–245 (2004). doi:10.1016/S0014-5793(04)00284-4

    Google Scholar 

  157. Witvrouw, M., Fikkert, V., Pluymers, W., Matthews, B., Mardel, K., Schols, D., Raff, J., Debyser, Z., De, C.E., Holan, G., Pannecouque, C.: Polyanionic (i.e., polysulfonate) dendrimers can inhibit the replication of human immunodeficiency virus by interfering with both virus adsorption and later steps (Reverse transcriptase/integrase) in the virus replicative cycle. Mol. Pharmacol. 58(5), 1100–1108 (2000)

    Google Scholar 

  158. Diallo, M.S., Christie, S., Swaminathan, P., Balogh, L., Shi, X.Y., Um, W., Papelis, C., Goddard, W.A., Johnson, J.H.: Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20(7), 2640–2651 (2004). doi:10.1021/La036108k

    Google Scholar 

  159. Theron, J., Walker, J.A., Cloete, T.E.: Nanotechnology and water treatment: Applications and emerging opportunities. Crit. Rev. Microbiol. 34(1), 43–69 (2008). doi:10.1080/10408410701710442

    Google Scholar 

  160. Lard, M., Kim, S.H., Lin, S., Bhattacharya, P., Ke, P.C., Lamm, M.H.: Fluorescence resonance energy transfer between phenanthrene and PAMAM dendrimers. Phys. Chem. Chem. Phys. 12(32), 9285–9291 (2010). doi:10.1039/B924522g

    Google Scholar 

  161. Riehemann, K., Schneider, S.W., Luger, T.A., Godin, B., Ferrari, M., Fuchs, H.: Nanomedicine–challenge and perspectives. Angewandte Chemie 48(5), 872–897 (2009). doi:10.1002/anie.200802585

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungpyo Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Myung, J.H., Tam, K.A., Hong, S. (2016). Dendritic Nanomaterials for Therapeutic and Diagnostic Applications. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics