Skip to main content

Robotics for Healthcare

  • Chapter
  • First Online:

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

Abstract

Since the first industrial robot was introduced in the 1960s, robotic technologies have contributed to enhance the physical limits of human workers in terms of repeatability, safety, durability, and accuracy in many industrial factories including those of the automobile, consumer electronics and shipbuilding industries. In the 21st century, robots are expected to be further applied in healthcare, which requires procedures that are objective, repetitive, robust and safe for users. Fueled by the rapid improvements of medical imaging and mechatronics technologies, healthcare robots have been rapidly adopted in almost every stage of the medical procedure by surgeons and physical therapists. In this chapter, we describe applications and the state of the art of healthcare robotics developed in the last decade. We focus on research and clinical activities that have followed successful demonstrations of early pioneering robots such as daVinci telesurgical robots and LOKOMAT training robots. First, we categorize major areas of healthcare robotics. Second, we discuss robotics for surgical operating rooms. Third, we review rehabilitation and assistive technologies. Finally, we summarize challenges and limitations of biomedical robotics as assistive tools for medical personnel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thrun, S.: Toward a framework for human-robot interaction. Human-Computer Interaction 19(1), 9–24 (2004)

    Article  Google Scholar 

  2. Rosen, J., Hannaford, B., Satava, R.M. (eds) Surgical Robotics: Systems Applications and Visions. Springer Science & Business Media (2011)

    Google Scholar 

  3. Taylor, R.H., Stoianovici, D.: Medical robotics in computer-integrated surgery. IEEE Transactions on Robotics and Automation 19(5), 765–781 (2003)

    Article  Google Scholar 

  4. Kwoh, Y.S., Hou, J., Jonckheere, E.A., Hayati, S.: A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Transactions on Biomedical Engineering 35(2), 153–160 (1988)

    Article  Google Scholar 

  5. Lum, M.J.H., Friedman, D.C.W., Sankaranarayanan, G., King, H., Fodero, K., Leuschke, R., Hannaford, B., Rosen, J., Sinanan, M.N.: The RAVEN: Design and validation of a tele-surgery system. International Journal of Robotics Research 28(9), 1183–1197 (2009)

    Article  Google Scholar 

  6. Hannaford, B., Rosen, J., Friedman, D.W., King, H., Roan, P., Cheng, L., Glozman, D., Ma, J., Kosari, S.N., White, L.: RAVEN-II: an open platform for surgical robotics research. IEEE Transactions on Biomedical Engineering 60(4), 954–959 (2009)

    Article  Google Scholar 

  7. Iyer, S., Looi, T., Drake, J.: A single arm, single camera system for automated suturing. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 239−244 (2013)

    Google Scholar 

  8. Shin, W.-H., Kwon, D.-S.: Surgical robot system for single-port surgery with novel joint mechanism. IEEE Transactions on Biomedical Engineering 60(4), 937–944 (2013)

    Article  Google Scholar 

  9. Choi, H., Kwak, H.S., Lim, Y.A., Kim, H.J.: Surgical robot for single-incision laparoscopic surgery. IEEE Transactions on Biomedical Engineering 61(9), 2458–2466 (2014)

    Article  Google Scholar 

  10. Sánchez, A., Poignet, P., Dombre, E., Menciassi, A., Dario, P.: A design framework for surgical robots: Example of the Araknes robot controller. Robotics and Autonomous Systems 62(9), 1342–1352 (2014)

    Article  Google Scholar 

  11. Russo, S., Dario, P., Menciassi, A.: A Novel Robotic Platform for Laser-Assisted Transurethral Surgery of the Prostate. IEEE Transactions on Biomedical Engineering 62(2), 489–500 (2014)

    Article  Google Scholar 

  12. Koutenaei, B.A., Wilson, E., Monfaredi, R., Peters, C., Kronreif, G., Cleary, K.: Robotic natural orifice transluminal endoscopic surgery (R-NOTES): Literature review and prototype system. Minimally Invasive Therapy & Allied Technologies 24(1), 18–23 (2015)

    Article  Google Scholar 

  13. Zygomalas, A., Kehagias, I., Giokas, K., Koutsouris, D.: Miniature Surgical Robots in the Era of NOTES and LESS Dream or Reality? Surgical Innovation 22(1), 97–107 (2015)

    Article  Google Scholar 

  14. De Donno, A., Zorn, L., Zanne, P., Nageotte, F., de Mathelin, M.: Introducing STRAS: a new flexible robotic system for minimally invasive surgery. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1213−1220 (2013)

    Google Scholar 

  15. Conrad, B.L., Jung, J., Penning, R.S., Zinn, M.R.: Interleaved continuum-rigid manipulation: An augmented approach for robotic minimally-invasive flexible catheter-based procedures. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 718−724 (2013)

    Google Scholar 

  16. Basdogan, C., De, S., Kim, J., Muniyandi, M., Kim, H., Srinivasan, M.A.: Haptics in minimally invasive surgical simulation and training. Computer Graphics and Applications 24(2), 56–64 (2004)

    Article  Google Scholar 

  17. Coles, T.R., Meglan, D., John, N.: The role of haptics in medical training simulators: a survey of the state of the art. IEEE Transactions on Haptics 4(1), 51–66 (2011)

    Article  Google Scholar 

  18. Zendejas, B., Brydges, R., Hamstra, S.J., Cook, D.A.: State of the evidence on simulation-based training for laparoscopic surgery: a systematic review. Annals of Surgery 257(4), 586–593 (2013)

    Article  Google Scholar 

  19. Hong, M.B., Jo, Y.-H.: Design and evaluation of 2-DOF compliant forceps with force-sensing capability for minimally invasive robot surgery. IEEE Transactions on Robotics 28(4), 932–941 (2012)

    Article  Google Scholar 

  20. He, C., Wang, S., Sang, H., Li, J., Zhang, L.: Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery. International Journal of Medical Robotics and Computer Assisted Surgery 10(3), 314–324 (2014)

    Article  Google Scholar 

  21. Marcus, H.J., Zareinia, K., Gan, L.S., Yang, F.W., Lama, S., Yang, G.-Z., Sutherland, G.R.: Forces exerted during microneurosurgery: a cadaver study. International Journal of Medical Robotics and Computer Assisted Surgery 10(2), 251–256 (2014)

    Article  Google Scholar 

  22. Payne, C.J., Latt, W.T., Yang, G.-Z.: A new hand-held force-amplifying device for micromanipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 1583−1588 (2012)

    Google Scholar 

  23. Gonenc, B., Feldman, E., Gehlbach, P., Handa, J., Taylor R.H., Iordachita, I.: Towards robot-assisted vitreoretinal surgery: Force-sensing micro-forceps integrated with a handheld micromanipulator. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 1399−1404 (2014)

    Google Scholar 

  24. Burgner, J., Rucker, D.C., Gilbert, H.B., Swaney, P.J., Russell 3rd, P.T., Weaver, K.D., Webster III, R.J.: A telerobotic system for transnasal surgery. IEEE/ASME Transactions on Mechatronics 19(3), 996–1006 (2013)

    Article  Google Scholar 

  25. Bedell, C., Lock, J., Gosline, A., Dupont, P.E.: Design optimization of concentric tube robots based on task and anatomical constraints. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 398−403 (2011)

    Google Scholar 

  26. Hendrick, R.J., Herrell, S.D., Webster, III, R.J.: A multi-arm hand-held robotic system for transurethral laser Prostate surgery. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 2850−2855 (2014)

    Google Scholar 

  27. Bowthorpe, M., Tavakoli, M., Becher, H., Howe, R.: Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery. IEEE Journal of Biomedical and Health Informatics 18(1), 157–166 (2014)

    Article  Google Scholar 

  28. He, X., Balicki, M., Gehlbach, P., Handa, J., Taylor, R., Iordachita, I.: A novel dual force sensing instrument with cooperative robotic assistant for vitreoretinal surgery. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 213−218 (2013)

    Google Scholar 

  29. Yu, H., Shen, J.-H., Joos, K.M., Simaan, N.: Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 225−231 (2013)

    Google Scholar 

  30. Ranzani, T., Silvestri, M., Argiolas, A., Vatteroni, M., Menciassi, A.: A novel trocar-less, multi-point of view, magnetic actuated laparoscope. In: Proceedings of the Robotics and Automation, pp 1199−1204 (2013)

    Google Scholar 

  31. Castro, C.A., Smith, S., Alqassis, A., Ketterl, T., Sun, Y., Ross, S., Rosemurgy, A., Savage, P.P., Gitlin, R.D.: MARVEL: A wireless miniature anchored robotic videoscope for expedited laparoscopy. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 2926−2931 (2012)

    Google Scholar 

  32. Ikemoto, S., Amor, H.B., Minato, T., Jung, B., Ishiguro, H.: Physical human-robot interaction: Mutual learning and adaptation. IEEE Robotics and Automation Magazine 19, 24–35 (2012)

    Article  Google Scholar 

  33. Marcus, H., Nandi, D., Darzi, A., Yang, G.Z.: Surgical robotics through a keyhole: From today’s translational barriers to tomorrow’s “disappearing” robots. IEEE Transactions on Biomedical Engineering 60(3), 674–681 (2013)

    Article  Google Scholar 

  34. Oden, R.: Systematic therapeutic exercises in the management of the paralyses in hemiplegia. Journal of the American Medical Association 70(12), 828–833 (1918)

    Article  Google Scholar 

  35. Sterr, A., Saunders, A.: CI therapy distribution: theory, evidence and practice. NeuroRehabilitation 21(2), 97–105 (2006)

    Google Scholar 

  36. Brown, J.A.: Recovery of motor function after stroke. Progress in Brain Research 157, 223–228 (2006)

    Article  Google Scholar 

  37. Ramachandran, V., Hirstein, W.: The perception of phantom limbs. The D. O. Hebb lecture. Brain 121(Pt9), 1603–1630 (1998)

    Google Scholar 

  38. Bobath, B.: Adult hemiplegia evaluation and treatment. Elsevier Health Sciences (1990)

    Google Scholar 

  39. Knott, M., Voss, D., Hipshman, H., Buckley, J., Mead, S.: Proprioceptive neuromuscular facilitation: patterns and techniques. Hoeber Medical Division, Harper & Row (1968)

    Google Scholar 

  40. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. Journal of Neuroengineering and Rehabilitation 11, 3 (2014)

    Article  Google Scholar 

  41. Díaz, I., Gil, J.J., Sánchez, E.: Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics 2011, 1–11 (2011)

    Article  Google Scholar 

  42. Hogan, N., Krebs, H.I., Charnnarong, J., Srikrishna, P., Sharon, A.: MIT-MANUS: A workstation for manual therapy and training II. In: Proceedings of the Telemanipulator Technology, vol, 1833. pp, 28−34 (1993)

    Google Scholar 

  43. Krebs, H.I., Ferraro, M., Buerger, S.P., Newbery, M.J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B.T., Hogan, N.: Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. Journal of Neuroengineering and Rehabilitation 1, 5 (2004)

    Article  Google Scholar 

  44. Krebs, H.I., Volpe, B.T., Williams, D., Celestino, J., Charles, S.K., Lynch, D., Hogan, N.: Robot-aided neurorehabilitation: A robot for wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(3), 327–335 (2007)

    Article  Google Scholar 

  45. Lum, P.S., Burgar, C.G., Shor, P.C.: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(2), 186–194 (2004)

    Article  Google Scholar 

  46. Lum, P.S., Burgar, C.G., Van der Loos, M., Shor, P.C., Majmundar, M., Yap, R.: MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. Journal of Rehabilitation Research and Development 43(5), 631–642 (2006)

    Article  Google Scholar 

  47. Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., Werner, C.: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Archives of Physical Medicine and Rehabilitation 84(6), 915–920 (2003)

    Article  Google Scholar 

  48. Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., Lingnau, M.L.: Computerized arm training improves the motor control of the severely affected arm after stroke: A single-blinded randomized trial in two centers. Stroke 36(9), 1960–1966 (2005)

    Article  Google Scholar 

  49. Hesse, S., Kuhlmann, H., Wilk, J., Tomelleri, C., Kirker, S.G.B.: A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: a case series in chronic and acute stroke patients. Journal of Neuroengineering and Rehabilitation 5, 21 (2008)

    Article  Google Scholar 

  50. Riener, R., Nef, T., Colombo, G.: Robot-aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing 43(1), 2–10 (2005)

    Article  Google Scholar 

  51. Nef, T., Quinter, G., Müller, R., Riener, R.: Effects of arm training with the robotic device ARMin I in chronic stroke: Three single cases. Neurodegenerative Diseases 6(5–6), 240–251 (2009)

    Article  Google Scholar 

  52. Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M.: Robotic Orthosis Lokomat: A Rehabilitation and Research Tool. Neuromodulation 6(2), 108–115 (2003)

    Article  Google Scholar 

  53. Krewer, C., Müller, F., Husemann, B., Heller, S., Quintern, J., Koenig, E.: The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects. Gait and Posture 26(3), 372–377 (2007)

    Article  Google Scholar 

  54. Hidler, J., Nichols, D., Pelliccio, M., Brady, K., Campbell, D.D., Kahn, J.H., Hornby, T.G.: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabilitation and Neural Repair 23(1), 5–13 (2009)

    Article  Google Scholar 

  55. Alcobendas-Maestro, M., Esclarin-Ruz, A., Casado-Lopez, R.M., Munoz-Gonzalez, A., Perez-Mateos, G., Gonzalez-Valdizan, E., Martin, J.L.R.: Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: Randomized controlled trial. Neurorehabilitation and Neural Repair 26(9), 1058–1063 (2012)

    Article  Google Scholar 

  56. Sanchez, R., Reinkensmeyer, D., Shah, P., Liu, J., Rao, S., Smith, R., Cramer, S., Rahman, T., Bobrow, J.: Monitoring functional arm movement for home-based therapy after stroke. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society, pp 4787−4790 (2004)

    Google Scholar 

  57. Sanchez, R.J., Liu, J., Rao, S., Shah, P., Smith, R., Rahman, T., Cramer, S.C., Bobrow, J.E., Reinkensmeyer, D.J.: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(3), 378–389 (2006)

    Article  Google Scholar 

  58. Gijbels, D., Lamers, I., Kerkhofs, L., Alders, G., Knippenberg, E., Feys, P.: The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. Journal of Neuroengineering and Rehabilitation 8, 5 (2011)

    Article  Google Scholar 

  59. Bovolenta, F., Sale, P., Dall’Armi, V., Clerici, P., Franceschini, M.: GRobot-aided therapy for upper limbs in patients with stroke-related lesions. Brief report of a clinical experience. Journal of Neuroengineering and Rehabilitation 8, 18 (2008)

    Article  Google Scholar 

  60. Freivogel, S., Mehrholz, J., Husak-Sotomayor, T., Schmalohr, D.: Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Injury 22(7–8), 625–632 (2008)

    Article  Google Scholar 

  61. Freivogel, S., Schmalohr, D., Mehrholz, J.: Improved walking ability and reduced therapeutic stress with an electromechanical gait device. Journal of Rehabilitation Medicine 41(9), 734–739 (2009)

    Article  Google Scholar 

  62. West, G.R.: Powered gait orthosis and method of utilizing same. US Patent 6,689 075 (February 10, 2004)

    Google Scholar 

  63. Volpe, B.T., Krebs, H., Hogan, N., Otr, L., Diels, C., Aisen, M.: A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 54, 1938–1944 (2000)

    Article  Google Scholar 

  64. Freeman, C.T., Hughes, A.M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: A robotic workstation for stroke rehabilitation of the upper extremity using FES. Medical Engineering & Physics 31(3), 364–373 (2009)

    Article  Google Scholar 

  65. Zhihao, Z., Yuan, Z., Ninghua, W., Fan, G., Kunlin, W., Qining., W.: On the design of a robot-assisted rehabilitation system for ankle joint with contracture and/or spasticity based on proprioceptive neuromuscular facilitation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 736−741 (2014)

    Google Scholar 

  66. Feil-Seifer, D., Mataric, M.J.: Defining socially assistive robotics. In: Proceedings of the IEEE International Conference on Rehabilitation Robotics, pp 465−468 (2005)

    Google Scholar 

  67. Lobo-Prat, J., Kooren, P.N., Stienen, A.H.A., Herder, J.L., Koopman, B.F.J.M., Veltink, P.H.: Non-invasive control interfaces for intention detection in active movement-assistive devices. Journal of Neuroengineering and Rehabilitation 11, 168 (2014)

    Article  Google Scholar 

  68. http://www.besticinc.com/home/

  69. Dahl, T.S., Boulos, M.N.K.: Robots in Health and Social Care: A Complementary Technology to Home Care and Telehealthcare. Robotics 3(1), 1–21 (2013)

    Article  Google Scholar 

  70. My Spoon. http://www.secom.co.jp/english/myspoon (retrieved February 10, 2015)

  71. Neater Arm Support. http://www.neater.co.uk/neater-arm-support (retrieved February 10, 2015)

  72. Hasegawa, Y., Oura, S., Takahashi, J.: Exoskeletal meal assistance system (EMAS II) for patients with progressive muscular disease. Advanced Robotics 27(18), 1385–1398 (2013)

    Article  Google Scholar 

  73. Kiguchi, K., Hayashi, Y.: An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(4), 1064–1071 (2012)

    Article  Google Scholar 

  74. Katz, S., Ford, A.B., Moskowitz, R.W., Jackson, B.A., Jaffe, M.W.: Studies of illness in the aged: The index of ADL: a standardized measure of biological and psychosocial function. Journal of the American Medical Association 185(12), 914–919 (1963)

    Article  Google Scholar 

  75. The Robotic SEM Glove. http://www.bioservo.com/en/the-sem-technology/sem-glove/ (retrieved February 13, 2015)

  76. Nilsson, M., Ingvast, J., Wikander, J., von Holst, H.: The soft extra muscle system for improving the grasping capability in neurological rehabilitation. In: Proceedings of the IEEE EMBS Conference on Biomedical Engineering and Sciences, pp 412−417 (2012)

    Google Scholar 

  77. Heo, P., Kim, J.: Power-Assistive Finger Exoskeleton With a Palmar Opening at the Fingerpad. IEEE Transactions on Biomedical Engineering 61(11), 2688–2697 (2014)

    Article  Google Scholar 

  78. TEK Robotic Mobilization Device. http://www.matiarobotics.com/index.html (retrieved February 15, 2015)

  79. Nakajima, S.: Proposal of a personal mobility vehicle capable of traversing rough terrain. Disability and Rehabilitation: Assistive Technology 9(3), 248–259 (2013)

    Article  MathSciNet  Google Scholar 

  80. ReWalk – More than Walking. http://www.rewalk.com/ (retrieved February 15, 2015)

  81. Esquenazi, A., Talaty, M., Packel, A., Saulino, M.: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation 91(11), 911–921 (2012)

    Article  Google Scholar 

  82. Carpino, G., Accoto, D., Tagliamonte, N.L., Ghilardi, G., Guglielmelli, E.: Lower limb wearable robots for physiological gait restoration: state of the art and motivations. MEDIC Methodology & Education for Clinical Innovation – New Series 21(2), 72–80 (2013)

    Google Scholar 

  83. Ekso Bionics – An exoskeleton bionic suit or a wearable robot that helps people walk again. http://intl.eksobionics.com/ (retrieved February 16, 2015)

  84. Strausser, K.A., Kazerooni, H.: The development and testing of a human machine interface for a mobile medical exoskeleton. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pp 4911−4916 (2011)

    Google Scholar 

  85. Rex Bionics – Step into the future. http://www.rexbionics.com/. (retrieved February 16, 2015)

  86. Quintero, H.A., Farris, R.J., Goldfarb, M.: A method for the autonomous control of lower limb exoskeletons for persons with paraplegia. Journal of Medical Devices 6(4), 041003 (2012)

    Article  Google Scholar 

  87. Indego – Powering People Forward. http://www.indego.com/indego/en/home (retrieved February 17, 2015)

  88. Ronsse, R., Vitiello, N., Lenzi, T., van den Kieboom, J., Carrozza, M.C., Ijspeert, A.J.: Humanrobot synchrony: flexible assistance using adaptive oscillators. IEEE Transactions on Biomedical Engineering 58(4), 1001–1012 (2011)

    Article  Google Scholar 

  89. Roy, S., De Luca, G., Cheng, M., Johansson, A., Gilmore, L., De Luca, C.: Electro-mechanical stability of surface EMG sensors. Medical & Biological Engineering & Computing 45(5), 447–457 (2007)

    Article  Google Scholar 

  90. Kamavuako, E.N., Englehart, K.B., Jensen, W., Farina, D.: Simultaneous and proportional force estimation in multiple degrees of freedom from intramuscular EMG. IEEE Transactions on Biomedical Engineering 59(7), 1804–1807 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, J., Gu, G.M., Heo, P. (2016). Robotics for Healthcare. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics