Skip to main content

Robotic Systems for Minimally Invasive Diagnosis and Therapy

  • Chapter
  • First Online:
  • 2400 Accesses

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

Abstract

Minimally invasive surgery and interventional procedures have seen rapid advancement as one of leading trend in medical technology innovation for its distinguished clinical benefit for patient. Robotic systems and technologies have made remarkable contribution to the innovation enabling various innovative devices and procedures including robotic laparoscopic surgery assist system. While robotic systems to assist general surgery seem to become mature technology, robotic systems for interventional procedures and neurological surgery are newly emerging. The minimally invasive procedures have inherent limitations and constraints that make human operation difficult or less optimal. Various medical imaging modalities are utilized as visual sensor for the procedures and each has limitations such as radiation exposure, resolution and sensitivity, real-time imaging capability, electromagnetic interference and etc. Tiny and complex tissue structure through which devices for the minimally invasive procedures perform diagnostic or therapeutic operation is another major limiting condition in terms of dexterity or precision. Robotic systems that converge various electro-mechanical engineering and computer science technologies facilitate human physician overcoming these limitations and achieving better clinical outcome for patient. Computed tomography (CT) or ultrasound guided biopsy is one of long researched applications for robotic system utilization. Several robotic systems for cardiac intervention and neurological surgery are already available for clinical use. The clinical efficacy of the robotic technologies needs further study including large scale randomized clinical study and safety issue with the use of robotic system either in assist or automation manner also need more research. It seems increasingly clear that robotic system technologies will continuously provide answers to many of unmet clinical needs in minimally invasive diagnosis and therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saliba, W., Reddy, V.Y., Wazni, O., Cummings, J.E., Burkhardt, J.D., Haissaguerre, M., Kautzner, J., Peichl, P., Neuzil, P., Schibgilla, V., Noelker, G., Brachmann, J., Di Biase, L., Barrett, C., Jais, P., Natale, A.: Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J. Am. Coll. Cardiol. 51(25), 2407–2411 (2008)

    Article  Google Scholar 

  2. Steven, D., Servatius, H., Rostock, T., Hoffmann, B., Drewitz, I., Müllerleile, K., Sultan, A., Aydin, M.A., Meinertz, T., Willems, S.: Reduced fluoroscopy during atrial fibrillation ablation: benefits of robotic guided navigation. J. Cardiovasc. Electrophysiol. 21(1), 6–12 (2010)

    Article  Google Scholar 

  3. Dewire, J., Calkins, H.: State-of-the-art and emerging technologies for atrial fibrillation ablation. Nat. Rev. Cardiol. 7(3), 129–138 (2010)

    Article  Google Scholar 

  4. Walsh, C.J., Hanumara, N.C., Slocum, A.H., Shepard, J.A., Gupta, R.: A patient-mounted, telerobotic tool for ct-guided percutaneous interventions. Journal of Medical Devices 2(1), 011007–10 (2008)

    Article  Google Scholar 

  5. Piccin, O., Bayle, B., Maurin, B., de Mathelin, M.: Kinematic modeling of a 5-dof parallel mechanism for semi-spherical workspace. Mechanism and Machine Theory 44(8), 1485–1496 (2009)

    Article  MATH  Google Scholar 

  6. Stoianovici, D., Cleary, K., Patriciu, A., Mazilu, D., Stanimir, A., Craciunoiu, N., Watson, V., Kavoussi, L.: Acubot: a robot for radiological interventions. IEEE Transactions on Robotics and Automation 19(5), 927–930 (2003)

    Article  Google Scholar 

  7. Bebek, O., Hwang, M.J., Cavusoglu, M.C.: Design of a parallel robot for needle-based interventions on small animals. IEEE/ASME Transactions on Mechatronics 18(1), 62–73 (2013)

    Article  Google Scholar 

  8. Kobayashi, Y., Hong, J., Hamano, R., Okada, K., Fujie, M.G., Hashizume, M.: Development of a needle insertion manipulator for central venous catheterization. The International Journal of Medical Robotics and Computer Assisted Surgery 8(1), 34–44 (2012)

    Article  Google Scholar 

  9. Moon, Y., Choi, H.J., Seo, J.B., Choi, J.: Design and kinematic analysis of a new end-effector for robotic needle insertion-type intervention system. International Journal of Advanced Robotic Systems 11(190), 1–12 (2014)

    Article  Google Scholar 

  10. Chung, J, Cha, H.J., Yi, B.J., Kim, W.K.: Implementation of a 4-dof parallel mechanism as a needle insertion device. In: IEEE International Conference on Robotics and Automation, Anchorage, USA, May 3-8, 2010

    Google Scholar 

  11. Neubach, Z., Shoham, M.: Ultrasound-Guided Robot for Flexible Needle Steering. IEEE Trans. on Biomed. 57(4), 799–805 (2010)

    Article  Google Scholar 

  12. Tang, L., Chen, Y., He, X.: Compliant needle modeling and steerable insertion simulation. Computer-Aided Design and Applications 5, 39–46 (2008)

    Article  Google Scholar 

  13. Okazawa, S., Ebrahimi, R., Chuang, J., Salcudean, S.E., Rohling, R.: Hand-held steering needle device. IEEE/ASME Transactions on Mechatronics 10(3), 285–296 (2005)

    Article  Google Scholar 

  14. Schueler, B.A.: Operator shielding: how and why. Techniques in Vascular and Interventional Radiology 13(3), 167–171 (2010)

    Article  Google Scholar 

  15. Melzer, A., Gutmann, B., Remmele, T., Wolf, R., Lukoscheck, A., Bock, M., Bardenheuer, H., Fischer, H.: Innomotion for percutaneous image-guided interventions. IEEE Engineering in Medicine and Biology Magazine 27(3), 66–73 (2008)

    Article  Google Scholar 

  16. Salcudean, S.E., Prananta, T.D., Morris, W.J., Spadinger, I.: A robotic needle guide for prostate brachytherapy. In: IEEE International Conference on Robotics and Automation (ICRA), Pasadena, USA, pp. 2975−2981, May 19-23 2008

    Google Scholar 

  17. Bassan, H.S., Patel, R.V., Moallem, M.: A novel manipulator for percutaneous needle insertion: Design and experimentation. IEEE/ASME Transactions on Mechatronics 14(6), 746–761 (2009)

    Article  Google Scholar 

  18. Loser, M.H., Navab, N.: A new robotic system for visually controlled percutaneous interventions under ct fluoroscopy. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), Pittsburgh, USA, pp. 887−896, October 11-14 2000

    Google Scholar 

  19. Conradie, J.P.: Fluoroscopy based needle positioning system for percutaneous nephrolithotomy procedures. PhD Dissertation, Stellenbosch: Stellenbosch University (2008)

    Google Scholar 

  20. Chen, X.: Instrument guide for MRI-guided percutaneous interventions. PhD Dissertation, Cambridge: Massachusetts Institute of Technology (2010)

    Google Scholar 

  21. Lin, M.L., Yang, B.D., Wang, Y.H., Yang, C.L., Wang, J.L.: A miniature patient-mount navigation system for assisting needle placement in ct-guided intervention. The International Journal of Medical Robotics and Computer Assisted Surgery 7(4), 423–430 (2011)

    Article  MathSciNet  Google Scholar 

  22. Hungr, N., Fouard, C., Robert, A., Bricault, I., Cinquin, P.: interventional radiology robot for CT and MRI guided percutaneous interventions. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 137–144. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Najafi, F., Sepehri, N.: A robotic wrist for remote ultrasound imaging. Mechanism and Machine Theory 46(8), 1153–1170 (2011)

    Article  Google Scholar 

  24. Zoppi, M., Zlatanov, D., Gosselin, C.M.: Analytical kinematics models and special geometries of a class of 4-dof parallel mechanisms. IEEE Transactions on Robotics 21(6), 1046–1055 (2005)

    Article  Google Scholar 

  25. Lum, M., Rosen, J., Sinanan, M.N., Hannaford, B.: Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches. IEEE Transactions on Biomedical Engineering 53(7), 1440–1445 (2006)

    Article  Google Scholar 

  26. Zhang, X., Lehman, A., Nelson, C.A., Farritor, S.M., Oleynikov, D.: Cooperative robotic assistant for laparoscopic surgery: Cobrasurge. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA, pp. 5540−5545, October 11-15 2009

    Google Scholar 

  27. Ayvali, E., Liang, C.P., Ho, M., Chen, Y., Desia, J.P.: Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures. International Journal of Robotics Research. 31(5), 588–603 (2012)

    Article  Google Scholar 

  28. Sears, P., Dupont, P.: A steerable needle technology using curved concentric tubes. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)

    Google Scholar 

  29. Torabi, M., Hauser, K., Alterovitz, R., Duindam, V., Goldberg, K.: Guiding medical needles using single-point tissue manipulation. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2705−2710 (2009)

    Google Scholar 

  30. Burkhardt, J.D., Natale, A.: New technologies in atrial fibrillation ablation. Circulation 120(15), 1533–1541 (2009)

    Article  Google Scholar 

  31. Bunch, T.J., Asirvatham, S.J., Friedman, P.A., Monahan, K.H., Munger, T.M., Rea, R.F., Sinak, L.J., Packer, D.L.: Outcomes after cardiac perforation during radiofrequency ablation of the atrium. J. Cardiovasc. Electrophysiol. 16(11), 1172–1179 (2005)

    Article  Google Scholar 

  32. Fu, Y., Liu, H., Huang, W., Wang, S., Liang, Z.: Steerable catheters in minimally invasive vascular surgery. Int. J. Med. Robotics. Comput. Assist. Surg. 5, 381–391 (2009)

    Article  Google Scholar 

  33. Chun, K.R., Schmidt, B., Köktürk, B., Tilz, R., Fürnkranz, A., Konstantinidou, M., Wissner, E., Metzner, A., Ouyang, F., Kuck, K.H.: Catheter ablation - new developments in robotics. Herz Kardiovaskuläre Erkrankungen 33(8), 586–589 (2008)

    Article  Google Scholar 

  34. Ernst, S.: Robotic approach to catheter ablation. Curr. Opin. Cardiol. 23, 28–31 (2008)

    Article  MathSciNet  Google Scholar 

  35. Sensei robotic catheter system [updated 28 March 2011; cited 12 May 2011]. http://en.wikipedia.org/wiki/Sensei_robotic_catheter_system

  36. Reddy, V.Y., Neuzil, P., Malchano, Z.J., Vijaykumar, R., Cury, R., Abbara, S., Weichet, J., McPherson, C.D., Ruskin, J.N.: View-synchronized robotic image-guided therapy for atrial fibrillation ablation: experimental validation and clinical feasibility. Circulation 115(21), 2705–2714 (2007)

    Article  Google Scholar 

  37. Rosenberg, L.B.: Virtual fixtures: Perceptual tools for telerobotic manipulation. In: Proceedings of the IEEE Virtual Reality Annual International Symposium, pp. 76−82 (1993)

    Google Scholar 

  38. Abbott, J.J., Marayong, P., Okamura, A.M.: Haptic virtual fixtures for robot-assisted manipulation. Springer Tracts in Advanced Robotics 28, 49–64 (2007)

    Article  Google Scholar 

  39. Li, M., Ishii, M., Taylor, R.H.: Spatial motion constraints using virtual fixtures generated by anatomy. IEEE T. Robot. 23(1), 4–19 (2007)

    Article  Google Scholar 

  40. Li, M., Okamura, A.M.: Recognition of operator motions for real-time assistance using virtual fixtures. In: Proceedings of the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 125−31(2003)

    Google Scholar 

  41. Bettini, A., Marayong, P., Lang, S., Okamura, A.M., Hager, G.D.: Vision-assisted control for manipulation using virtual fixtures. IEEE T. Robot. 20(6), 953–966 (2004)

    Article  Google Scholar 

  42. Hungr, N., Fouard, C., Robert, A., Bricault, I, Cinquin, P.: Interventional Radiology Robot for CT and MRI Guided Percutaneous Interventions. In: Medical Image Computing and Computer-Assisted Intervention, Toronto, Canada (2011)

    Google Scholar 

  43. Reed, K.B., Kallem, V., Alterovitz, R., Goldberg, K., Okamura, A.M., Cowan, N.J.: Integrated Planning and Image-Guided Control for Planar Needle Steering. In: Proceedings of the IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 819−824 (2008). doi:10.1109/BIOROB.2008.4762833

  44. Cleary, K., Watson, V., Lindisch, D., Taylor, R.H., Fichtinger, G., Xu, S., White, C.S., Donlon, J., Taylor, M., Patriciu, A., Mazilu, D., Stoianovici, D.: Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int. J. Med. Robot. 1(2), 40–47 (2005)

    Article  Google Scholar 

  45. Marcelli, E., Cercenelli, L., Plicchi, G.: A Novel Telerobotic System to Remotely Navigate Standard Electrophysiology Catheters. Computers in Cardiology 35, 137–140 (2008)

    Google Scholar 

  46. Kronreif, G., Fürst, M., Ptacek, W., Kornfeld, M., Kettenbach, J.: Robotic system for image guided Therapie - B-Rob II. In: RAAD Workshop, BFD-022 (2006)

    Google Scholar 

  47. Maurin, B., Bayle, B., Piccin, O., Gangloff, J., de Mathelin, M., Doignon, C., Zanne, P., Gangi, A.: A Patient-Mounted Robotic Platform for CT-Scan Guided Procedures. IEEE Transactions on Biomedical Engineering 55(10), 2417–2425 (2008)

    Article  Google Scholar 

  48. Kaber, D.B., Endsley, M.R.: The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task. Theor. Issues in Ergon. Sci. 5(2), 113–153 (2004)

    Article  Google Scholar 

  49. Fischer, G.S., Krieger, A., Iordachita, I.I., Csoma, C., Whitcomb, L.L., Fichtinger, G.: MRI compatibility of robot actuation techniques – A comparative study. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 509–517. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  50. Zemiti, N., Bricault, I., Fouard, C., Sanchez, B., Cinquin, P.: A CT and MR compatible puncture robot to enhance accuracy and safety of image-guided interventions. IEEE/ASME Transactions on Mechatronics 13(3), 306–315 (2008)

    Article  Google Scholar 

  51. Taillant, E., Avila-Vilchis, J.-C., Allegrini, C., Bricault, I., Cinquin, P.: CT and MR compatible light puncture robot: architectural design and first experiments. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 145–152. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  52. Moon, Y., Choi, J.: Development of a robotic mechanism for teleoperation-based needle interventions. In: 44th International Symposium on Robotics, pp. 1−3, October 2013

    Google Scholar 

  53. Krieger, A., Susil, R.C., Menard, C., Coleman, J.A., Fichtinger, G., Atalar, E., Whitcomb, L.L.: Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Transactions on Biomedical Engineering 52(2), 306–313 (2005)

    Article  Google Scholar 

  54. Krieger, A., Iordachita, I., Guion, P., Singh, A.K., Kaushal, A., Menard, C., Pinto, P.A., Camphausen, K., Fichtinger, G., Whitcomb, L.L.: An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Transactions on Biomedical Engineering 58(11), 3049–3060 (2011)

    Article  Google Scholar 

  55. Taillant, E., Avila-Vilchis, J.-C., Allegrini, C., Bricault, I., Cinquin, P.: CT and MR Compatible Light Puncture Robot: Architectural Design and First Experiments. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 145–152. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  56. Fischer, G., Iordachita, I., DiMaio, S.P., Fichtinger, G.: Design of a robot for transperineal prostate needle placement in MRI scanner. In: IEEE International Conference on Mechatronics, pp. 592−597 (2006)

    Google Scholar 

  57. Song, S.E., Cho, N.B., Fischer, G., Hata, N., Tempany, C., Fichtinger, G., Iordachita, I.: Development of a pneumatic robot for MRI-guided transperineal prostate biopsy and brachytherapy: New approaches. In: IEEE International Conference on Robotics and Automation, pp. 2580−2585 (2010)

    Google Scholar 

  58. Yakar, D., Schouten, M.G., Bosboom, D.G.H., Barentsz, J.O., Scheenen, T.W.J., Futterer, J.J.: Feasibility of a pneumatically actuated MR-compatible robot for transrectal prostate biopsy guidance. Radiology 260(1), 241–247 (2011)

    Article  Google Scholar 

  59. Muntener, M., Patriciu, A., Petrisor, D., Mazilu, D., Bagga, H., Kavoussi, L., Cleary, K., Stoianovici, D.: Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68, 1313–1317 (2006)

    Article  Google Scholar 

  60. Stoianovici D, Patriciu A, Petrisor D, Mazilu D, Kavoussi L, A new type of motor: Pneumatic step motor. IEEE/ASME Transactions on Mechatronics 12(1): 98−106

    Google Scholar 

  61. Stoianovici, D., Song, D., Petrisor, D., Ursu, D., Mazilu, D., Muntener, M., Schar, M., Patriciu, A.: “MRI Stealth” robot for prostate interventions. Minimally Invasive Therapy 16(4), 241–248 (2007)

    Article  Google Scholar 

  62. Zngos, S., Herzog, C., Eichler, K., Hammerstingl, R., Lukoschek, A., Guthmann, S., Gutmann, B., Schoepf, U.J., Costello, P., Vogl, T.J.: MR-compatible assistance system for punction in a high-field system: Device and feasibility of transgluteal biopsies of the prostate gland. Eur. Radiol. 17, 1118–1124 (2007)

    Article  Google Scholar 

  63. Goldenberg, A.A., Trachtenberg, J., Kucharczyk, W., Yi, Y., Haider, M., Ma, L., Weersink, R., Raoufi, C.: Robotic system for closed-bore MRI-guide prostatic interventions. IEEE/ASME Transactions on Mechatronics 13(3), 374–379 (2008)

    Article  Google Scholar 

  64. Elhawary, H., Zivanovic, A., Rea, M., Davies, B., Besant, C., McRobbie, D., de Souza, N., Young, I., Lampérth, M.: The feasibility of mr-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 519–526. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  65. Tokuda, J., Fischer, G.S., DiMaio, S.P., Gobbi, D.G., Csoma, C., Mewes, P.W., Fichtinger, G., Tempany, C.M., Hata, N.: Integrated navigation and control software system for MRI-guided robotic prostate interventions. Computerized Medical Imaging and Graphics 34, 3–8 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaesoon Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moon, Y., Choi, J. (2016). Robotic Systems for Minimally Invasive Diagnosis and Therapy. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics