Skip to main content

Biomedical in vivo Optical Imaging for Disease Espying and Diagnosis

  • Chapter
  • First Online:
Biomedical Engineering: Frontier Research and Converging Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

Abstract

Biomedical optical imaging is a rapidly emerging field providing non-invasive or minimally invasive means in the preclinical and clinical realm. At present, optical imaging can deliver structural and functional information in great detail, making it a contender for biopsy. In vivo optical imaging modalities can perform an ‘optical biopsy’ that is envisaged to have a substantial impact on the detection and diagnosis of a myriad of diseases. Here we introduce optical modalities ranging from the nanoscopic to macroscopic scale. We have illustrated their recent developments in preclinical areas and also highlighted clinical optical imaging technologies that have moved from ‘benchtop to bedside’. Their perspectives and remaining challenges are also depicted. An abridged review, covering the applications of optical imaging for diagnosis of diseases and its future in guided treatment and monitoring therapies has been presented, which will be a suitable reference for the researchers who aspire to enter into the arena of biomedical optical imaging in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horton, N.G., et al.: In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics 7(3), 205–209 (2013)

    Google Scholar 

  2. Chen, B.-C., et al.: Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346(6208), 1257998 (2014)

    Google Scholar 

  3. Boas, D.A., Pitris, C., Ramanujam, N. (eds.): Handbook of biomedical optics. CRC Press, Boca Raton (2011)

    Google Scholar 

  4. Ellis, D.I., et al.: Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 138(14), 3871–3884 (2013)

    Google Scholar 

  5. Minsky, M.: Microscopy apparatus. Google Patents (1961)

    Google Scholar 

  6. Minsky, M.: Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988)

    Google Scholar 

  7. Pawley, J., Masters, B.R.: Handbook of biological confocal microscopy. Optical Engineering 35(9), 2765–2766 (1996)

    Google Scholar 

  8. Denk, W., Strickler, J.H., Webb, W.W.: Two-photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990)

    Google Scholar 

  9. Helmchen, F., Denk, W.: Deep tissue two-photon microscopy. Nature Methods 2(12), 932–940 (2005)

    Google Scholar 

  10. Abbe, E.: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9(1), 413–418 (1873)

    Google Scholar 

  11. Park, Y.I., et al.: Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chemical Society Reviews 44, 1302–1317 (2015)

    Google Scholar 

  12. Hell, S.W., Wichmann, J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19(11), 780–782 (1994)

    Google Scholar 

  13. Klar, T.A., Hell, S.W.: Subdiffraction resolution in far-field fluorescence microscopy. Optics Letters 24(14), 954–956 (1999)

    Google Scholar 

  14. Hofmann, M., et al.: Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America 102(49), 17565–17569 (2005)

    Google Scholar 

  15. Gustafsson, M.G.: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America 102(37), 13081–13086 (2005)

    Google Scholar 

  16. Heintzmann, R., Jovin, T.M., Cremer, C.: Saturated patterned excitation microscopy—a concept for optical resolution improvement. JOSA A 19(8), 1599–1609 (2002)

    Google Scholar 

  17. Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3(10), 793–796 (2006)

    Google Scholar 

  18. Betzig, E., et al.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)

    Google Scholar 

  19. Hess, S.T., Girirajan, T.P., Mason, M.D.: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal 91(11), 4258–4272 (2006)

    Google Scholar 

  20. Dickson, R.M., et al.: On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640), 355–358 (1997)

    Google Scholar 

  21. Moerner, W., Kador, L.: Optical detection and spectroscopy of single molecules in a solid. Physical Review Letters 62(21), 2535 (1989)

    Google Scholar 

  22. Huang, B., Babcock, H., Zhuang, X.: Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7), 1047–1058 (2010)

    Google Scholar 

  23. Keller, P.J., Ahrens, M.B.: Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron 85(3), 462–483 (2015)

    Google Scholar 

  24. Keller, P.J., Ahrens, M.B., Freeman, J.: Light-sheet imaging for systems neuroscience. Nature Methods 12(1), 27–29 (2015)

    Google Scholar 

  25. Keller, P.J., Dodt, H.-U.: Light sheet microscopy of living or cleared specimens. Current Opinion in Neurobiology 22(1), 138–143 (2012)

    Google Scholar 

  26. Krzic, U., et al.: Multiview light-sheet microscope for rapid in toto imaging. Nature Methods 9(7), 730–733 (2012)

    Google Scholar 

  27. Stelzer, E.H.: Light-sheet fluorescence microscopy for quantitative biology. Nature Methods 12(1), 23–26 (2015)

    MathSciNet  Google Scholar 

  28. Dodt, H.-U., et al.: Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods 4(4), 331–336 (2007)

    Google Scholar 

  29. Bouchard, M.B., et al.: Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photon. 9(2), 113–119 (2015)

    Google Scholar 

  30. Chen, Y., et al.: Recent advances in two-photon imaging: technology developments and biomedical applications. Chinese Optics Letters 11(1), 011703 (2013)

    Google Scholar 

  31. Taruttis, A., Ntziachristos, V.: Translational optical imaging. American Journal of Roentgenology 199(2), 263–271 (2012)

    Google Scholar 

  32. Hillman, E.M., et al.: In vivo optical imaging and dynamic contrast methods for biomedical research. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011(369), 4620–4643 (1955)

    Google Scholar 

  33. Patterson, A.P., Booth, S.A., Saba, R.: The Emerging Use of In Vivo Optical Imaging in the Study of Neurodegenerative Diseases. BioMed Research International, 14 (2014)

    Google Scholar 

  34. Ryu, Y., et al.: Lensed fiber-optic probe design for efficient photon collection in scattering media. Biomedical Optics Express 6(1), 191–210 (2015)

    MathSciNet  Google Scholar 

  35. Ntziachristos, V.: Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7(8), 603–614 (2010)

    Google Scholar 

  36. Ellenbroek, S.I., van Rheenen, J.: Imaging hallmarks of cancer in living mice. Nature Reviews Cancer 14(6), 406–418 (2014)

    Google Scholar 

  37. Ntziachristos, V., et al.: Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnology 23(3), 313–320 (2005)

    Google Scholar 

  38. Kodack, D.P., et al.: Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proceedings of the National Academy of Sciences 109(45), E3119–E3127 (2012)

    Google Scholar 

  39. Wang, X., et al.: Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnology 21(7), 803–806 (2003)

    Google Scholar 

  40. Bouma, B.: Handbook of optical coherence tomography. Informa Health Care (2001)

    Google Scholar 

  41. Tsai, T.-H., Fujimoto, J.G., Mashimo, H.: Endoscopic optical coherence tomography for clinical gastroenterology. Diagnostics 4(2), 57–93 (2014)

    Google Scholar 

  42. Chung, E., et al.: Uncovering tumor biology by intravital microscopy. In: Comprehensive Biomedical Physics, pp. 153–164. Elsevier, Oxford (2014)

    Google Scholar 

  43. Iftimia, N., Brugge, W.R., Hammer, D.X.: Advances in Optical Imaging for Clinical Medicine, vol. 6. John Wiley & Sons (2011)

    Google Scholar 

  44. Fujimoto, J.G., et al.: The development of OCT. In: Cardiovascular OCT Imaging, pp. 1–21. Springer (2015)

    Google Scholar 

  45. Li, J., et al.: Polarization sensitive optical frequency domain imaging system for endobronchial imaging. Optics Express 23(3), 3390–3402 (2015)

    Google Scholar 

  46. Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy. Nature Methods 2(12), 920–931 (2005)

    Google Scholar 

  47. Gualda, E., et al.: Going “open” with Mesoscopy: a new dimension on multi-view imaging. Protoplasma 251(2), 363–372 (2014)

    Google Scholar 

  48. Figueiras, E., et al.: Optical projection tomography as a tool for 3D imaging of hydrogels. Biomedical Optics Express 5(10), 3443–3449 (2014)

    Google Scholar 

  49. Rieckher, M., et al.: Microscopic optical projection tomography in vivo. PloS One 6(4), e18963 (2011)

    Google Scholar 

  50. Sharpe, J., et al.: Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567), 541–545 (2002)

    Google Scholar 

  51. Vinegoni, C., et al.: In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nature Methods 5(1), 45–47 (2008)

    Google Scholar 

  52. Ozturk, M.S., et al.: Mesoscopic Fluorescence Tomography of a Photosensitizer (HPPH) 3D Biodistribution in Skin Cancer. Academic Radiology 21(2), 271–280 (2014)

    Google Scholar 

  53. Vinegoni, C., et al.: Mesoscopic fluorescence tomography for in-vivo imaging of developing Drosophila. Journal of Visualized Experiments: JoVE 30, e1510 (2009)

    Google Scholar 

  54. Zhang, H.F., Maslov, K., Wang, L.V.: In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nature Protocols 2(4), 797–804 (2007)

    Google Scholar 

  55. Wang, L.V., Hu, S.: Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)

    Google Scholar 

  56. Zhang, H.F., et al.: Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnology 24(7), 848–851 (2006)

    Google Scholar 

  57. Ma, R., et al.: Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging. Optics Express 17(24), 21414–21426 (2009)

    Google Scholar 

  58. Ntziachristos, V., Razansky, D.: Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chemical Reviews 110(5), 2783–2794 (2010)

    Google Scholar 

  59. Razansky, D., Baeten, J., Ntziachristos, V.: Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT). Medical Physics 36(3), 939–945 (2009)

    Google Scholar 

  60. Razansky, D., Buehler, A., Ntziachristos, V.: Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nature Protocols 6(8), 1121–1129 (2011)

    Google Scholar 

  61. Contag, C.H., Bachmann, M.H.: Advances in in vivo bioluminescence imaging of gene expression. Annual Review of Biomedical Engineering 4(1), 235–260 (2002)

    Google Scholar 

  62. Rehemtulla, A., et al.: Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2(6), 491–495 (2000)

    Google Scholar 

  63. Sato, A., Klaunberg, B., Tolwani, R.: In vivo bioluminescence imaging. Comparative Medicine 54(6), 631–634 (2004)

    Google Scholar 

  64. Shah, K., Weissleder, R.: Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2(2), 215–225 (2005)

    Google Scholar 

  65. Amiot, C.L., et al.: Near-infrared fluorescent materials for sensing of biological targets. Sensors 8(5), 3082–3105 (2008)

    Google Scholar 

  66. Ale, A., et al.: FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nature Methods 9(6), 615–620 (2012)

    Google Scholar 

  67. Berning, S., et al.: Nanoscopy in a living mouse brain. Science 335(6068), 551 (2012)

    Google Scholar 

  68. Pellett, P.A., et al.: Two-color STED microscopy in living cells. Biomedical Optics Express 2(8), 2364–2371 (2011)

    Google Scholar 

  69. Cang, H., et al.: Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Optics Letters 30(22), 3048–3050 (2005)

    Google Scholar 

  70. Adler, D.C., et al.: Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Optics Express 16(7), 4376–4393 (2008)

    Google Scholar 

  71. Gratton, E.: Deeper tissue imaging with total detection. Science 331(6020), 1016–1017 (2011)

    Google Scholar 

  72. Chong, K., et al.: Current Optical Imaging Techniques for Brain Tumor Research: Application of in vivo Laser Scanning Microscopy Imaging with a Cranial Window System, pp. 155–172. InTech, Rijeka (2011)

    Google Scholar 

  73. Yao, J., et al.: Label-free oxygen-metabolic photoacoustic microscopy in vivo. Journal of Biomedical Optics 16(7), 076003-11 (2011)

    Google Scholar 

  74. Mallidi, S., et al.: Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Letters 9(8), 2825–2831 (2009)

    Google Scholar 

  75. Stiel, A.C., et al.: High contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed Multispectral Optoacoustic Tomography (tuMSOT). arXiv preprint arXiv:1412.3241 (2014)

  76. Contag, C.H., Ross, B.D.: It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. Journal of Magnetic Resonance Imaging 16(4), 378–387 (2002)

    Google Scholar 

  77. Watts, J.C., et al.: Bioluminescence imaging of Aβ deposition in bigenic mouse models of Alzheimer’s disease. Proceedings of the National Academy of Sciences 108(6), 2528–2533 (2011)

    Google Scholar 

  78. Choi, M., et al.: Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability. Proceedings of the National Academy of Sciences 108(22), 9256–9261 (2011)

    Google Scholar 

  79. Kuiper, T., et al.: Feasibility and accuracy of confocal endomicroscopy in comparison with narrow-band imaging and chromoendoscopy for the differentiation of colorectal lesions. The American Journal of Gastroenterology 107(4), 543–550 (2012)

    Google Scholar 

  80. Shahid, M.W., et al.: Diagnostic accuracy of probe-based confocal laser endomicroscopy in detecting residual colorectal neoplasia after EMR: a prospective study. Gastrointestinal Endoscopy 75(3), 525–533 (2012). e1

    Google Scholar 

  81. Kim, P., et al.: In vivo wide-area cellular imaging by side-view endomicroscopy. Nature Methods 7(4), 303–305 (2010)

    Google Scholar 

  82. Wallace, M., et al.: Miami classification for probe-based confocal laser endomicroscopy 43(10), 882–891 (2011)

    Google Scholar 

  83. Oh, G., et al.: Intravital imaging of mouse colonic adenoma using MMP-based molecular probes with multi-channel fluorescence endoscopy. Biomedical Optics Express 5(5), 1677–1689 (2014)

    Google Scholar 

  84. Habibollahi, P., et al.: Optical imaging with a cathepsin B activated probe for the enhanced detection of esophageal adenocarcinoma by dual channel fluorescent upper GI endoscopy. Theranostics 2(2), 227 (2012)

    Google Scholar 

  85. Hsiung, P.-L., et al.: Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Medicine 14(4), 454–458 (2008)

    MathSciNet  Google Scholar 

  86. Winkler, A.M., et al.: Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon. Journal of Biomedical Optics 15(4), 041512-10 (2010)

    Google Scholar 

  87. Alex, A., et al.: Characterization of eosinophilic esophagitis murine models using optical coherence tomography. Biomedical Optics Express 5(2), 609–620 (2014)

    Google Scholar 

  88. Iftimia, N., et al.: Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study. Biomedical Optics Express 3(1), 178–191 (2012)

    Google Scholar 

  89. Kothapalli, S.-R., et al.: Endoscopic imaging of Cerenkov luminescence. Biomedical Optics Express 3(6), 1215–1225 (2012)

    Google Scholar 

  90. Liu, H., et al.: Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. Journal of Nuclear Medicine 53(10), 1579–1584 (2012)

    Google Scholar 

  91. Mitchell, G.S., et al.: In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2011(369), 4605–4619 (1955)

    Google Scholar 

  92. Liu, L., Mason, R.P., Gimi, B.: Dynamic bioluminescence and fluorescence imaging of the effects of the antivascular agent Combretastatin-A4P (CA4P) on brain tumor xenografts. Cancer Letters 356(2), 462–469 (2015)

    Google Scholar 

  93. O’Neill, K., et al.: Bioluminescent imaging: a critical tool in pre-clinical oncology research. The Journal of Pathology 220(3), 317–327 (2010)

    Google Scholar 

  94. Uhrbom, L., Nerio, E., Holland, E.C.: Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nature Medicine 10(11), 1257–1260 (2004)

    Google Scholar 

  95. Na, J.H., et al.: Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials 32(22), 5252–5261 (2011)

    Google Scholar 

  96. Vakoc, B.J., et al.: Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Medicine 15(10), 1219–1223 (2009)

    Google Scholar 

  97. Barretto, R.P., et al.: Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nature Medicine 17(2), 223–228 (2011)

    Google Scholar 

  98. Ntziachristos, V., Chance, B.: Breast imaging technology: Probing physiology and molecular function using optical imaging-applications to breast cancer. Breast Cancer Research 3(1), 41 (2000)

    Google Scholar 

  99. Chung, E., et al.: Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PloS One 4(12), e8316 (2009)

    Google Scholar 

  100. Kedrin, D., et al.: Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods 5(12), 1019–1021 (2008)

    Google Scholar 

  101. Koronyo-Hamaoui, M., et al.: Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54, S204–S217 (2011)

    Google Scholar 

  102. Meyer-Luehmann, M., et al.: Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451(7179), 720–724 (2008)

    Google Scholar 

  103. Skoch, J., et al.: Development of an optical approach for noninvasive imaging of Alzheimer’s disease pathology. Journal of Biomedical Optics 10(1), 011007–0110077 (2005)

    Google Scholar 

  104. Schwartz, T.H., Bonhoeffer, T.: In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nature Medicine 7(9), 1063–1067 (2001)

    Google Scholar 

  105. Binder, D.K., Haut, S.R.: Toward new paradigms of seizure detection. Epilepsy & Behavior 26(3), 247–252 (2013)

    Google Scholar 

  106. Guevara, E., et al.: Optical imaging of acute epileptic networks in mice. Journal of Biomedical Optics 18(7), 076021 (2013)

    Google Scholar 

  107. Haglund, M.M.: Optical imaging of visual cortex epileptic foci and propagation pathways. Epilepsia 53(s1), 87–97 (2012)

    MathSciNet  Google Scholar 

  108. Zhang, T., et al.: Pre-seizure state identified by diffuse optical tomography. Scientific Reports 4, 3798 (2014). doi:10.1038/srep03798110

    Google Scholar 

  109. Yu, L., et al.: Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model. Journal of Biomedical Optics 15(6), 066006 (2010)

    Google Scholar 

  110. Winship, I.R., et al.: Augmenting collateral blood flow during ischemic stroke via transient aortic occlusion. Journal of Cerebral Blood Flow & Metabolism 34(1), 61–71 (2014)

    Google Scholar 

  111. Clarkson, A.N., et al.: Multimodal examination of structural and functional remapping in the mouse photothrombotic stroke model. Journal of Cerebral Blood Flow & Metabolism 33(5), 716–723 (2013)

    Google Scholar 

  112. Lay, C.C., et al.: Mild sensory stimulation protects the aged rodent from cortical ischemic stroke after permanent middle cerebral artery occlusion. Journal of the American Heart Association 1(4), e001255 (2012)

    Google Scholar 

  113. Zhang, S., Murphy, T.H.: Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biology 5(5), e119 (2007)

    Google Scholar 

  114. Taruttis, A., et al.: Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Optics Express 18(19), 19592–19602 (2010)

    Google Scholar 

  115. Jaffer, F.A., et al.: Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. Journal of the American College of Cardiology 57(25), 2516–2526 (2011)

    Google Scholar 

  116. Guillermo, J.T., et al.: Optical coherence tomography in cardiology. In: Handbook of Optical Coherence Tomography, pp. 693–703. CRC Press (2001)

    Google Scholar 

  117. Chauhan, B.C., et al.: Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. PloS One 7(6), e40352 (2012)

    Google Scholar 

  118. Luker, G.D., Luker, K.E.: Optical imaging: current applications and future directions. Journal of Nuclear Medicine 49(1), 1–4 (2008)

    Google Scholar 

  119. Napp, J., Mathejczyk, J.E., Alves, F.: Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives. Pediatric Radiology 41(2), 161–175 (2011)

    Google Scholar 

  120. Shin, D., et al.: A fiber-optic fluorescence microscope using a consumer-grade digital camera for in vivo cellular imaging. PloS One 5(6), e11218 (2010)

    Google Scholar 

  121. Wang, T.D., Van Dam, J.: Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clinical Gastroenterology and Hepatology 2(9), 744–753 (2004)

    Google Scholar 

  122. Castillo, M., et al.: Optical coherence tomography for the diagnosis of neovascular age-related macular degeneration: a systematic review. Eye 28(12), 1399–1406 (2014)

    Google Scholar 

  123. Mrugacz, M., Bakunowicz-Lazarczyk, A.: Optical coherence tomography measurement of the retinal nerve fiber layer in normal and juvenile glaucomatous eyes. Ophthalmologica. Journal International D’ophtalmologie. International Journal of Ophthalmology. Zeitschrift fur Augenheilkunde 219(2), 80–85 (2004)

    Google Scholar 

  124. Blatter, C., et al.: In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. Biomedical Optics Express 3(10), 2636–2646 (2012)

    Google Scholar 

  125. Koenig, K., et al.: Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. Journal of Biophotonics 2(6–7), 389–397 (2009)

    Google Scholar 

  126. Fujimoto, J.G., Farkas, D.: Biomedical optical imaging. Oxford University Press, New York (2009)

    Google Scholar 

  127. Zhou, C., et al.: Cervical inlet patch-optical coherence tomography imaging and clinical significance. World Journal of Gastroenterology 18(20), 2502–2510 (2012)

    Google Scholar 

  128. Zhou, C., et al.: Three-dimensional endoscopic optical coherence tomography imaging of cervical inlet patch. Gastrointestinal Endoscopy 75(3), 675–677 (2012)

    Google Scholar 

  129. Chu, E.M.-Y., et al.: A window into the brain: An in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Research: Neuroimaging 203(1), 89–94 (2012)

    Google Scholar 

  130. Larrosa, J.M., et al.: Potential new diagnostic tool for Alzheimer’s disease using a linear discriminant function for Fourier domain optical coherence tomography. Investigative Ophthalmology & Visual Science 55(5), 3043–3051 (2014)

    Google Scholar 

  131. Satue, M., et al.: Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson’s disease patients. Eye 27(4), 507–514 (2013)

    Google Scholar 

  132. Halpern, A.C., Rajadhyaksha, M., Toledo-Crow, R.: Bringing histology to the bedside. Journal of Investigative Dermatology 124(3), viii–x (2005)

    Google Scholar 

  133. Goetz, M.: Confocal Laser Endomicroscopy: Applications in Clinical and Translational Science—A Comprehensive Review. ISRN Pathology, pp. 1–13 (2012)

    Google Scholar 

  134. Dimitrow, E., et al.: Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. Journal of Investigative Dermatology 129(7), 1752–1758 (2009)

    Google Scholar 

  135. Perry, S.W., Burke, R.M., Brown, E.B.: Two-photon and second harmonic microscopy in clinical and translational cancer research. Annals of Biomedical Engineering 40(2), 277–291 (2012)

    Google Scholar 

  136. Murari, K., et al.: Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm. Optics Letters 36(7), 1299–1301 (2011)

    Google Scholar 

  137. Gibson, A., Hebden, J., Arridge, S.R.: Recent advances in diffuse optical imaging. Physics in Medicine and Biology 50(4), 1–43 (2005)

    Google Scholar 

  138. Herranz, M., Ruibal, A.: Optical imaging in breast cancer diagnosis: the next evolution. Journal of Oncology (2012). Article ID 863747

    Google Scholar 

  139. Garcia-Uribe, A., et al.: In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry. Journal of Biomedical Optics 16(2), 020501 (2011)

    Google Scholar 

  140. Wu, K., et al.: Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. Urology 78(1), 225–231 (2011)

    Google Scholar 

  141. König, K., et al.: Clinical two-photon microendoscopy. Microscopy Research and Technique 70(5), 398–402 (2007)

    Google Scholar 

  142. Thekkek, N., Richards-Kortum, R.: Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nature Reviews Cancer 8(9), 725–731 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euiheon Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Safi, A.M., Chung, E. (2016). Biomedical in vivo Optical Imaging for Disease Espying and Diagnosis. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics