Skip to main content

Nanoparticles for Imaging and Non-viral Gene Therapy

  • Chapter
  • First Online:
Biomedical Engineering: Frontier Research and Converging Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

  • 2345 Accesses

Abstract

Gene therapy has not been investigated as much as pharmacotherapy because of immunogenic issues when a virus was used as a gene delivery vector. Despite the challenges, gene therapy still has attractive aspects. It has less side effects and is more target-specific compared to pharmacotherapy, and it also has potential for generic disease treatment or personalized medicine. Therefore, it would be truly beneficial if safe and reliable vectors are used and targeted for area of interest. Interest in multifunctional nanomedicine for diagnostics and therapeutics has been increasing. For this reason, non-viral gene delivery has been studied, combined with molecular imaging to visualize targeting. In this review, complex nanoparticle systems designed for molecular imaging and gene delivery are discussed. There are design criteria which need to be considered for the nanoparticle complex systems. The criteria are as follows: i) the nanoparticle complex should be stable; ii) it should have efficient targeting capability; iii) controlled release of genes should be available; iv) molecular imaging should be possible; and lastly, v) there should be noticeable therapeutic efficacy. Examples on nanoparticle complex which meet these criteria are described in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yi, Y., Noh, M.J., Lee, K.H.: Current Advances in Retroviral Gene Therapy. Current Gene Therapy 11(3), 218–228 (2011)

    Article  Google Scholar 

  2. Pack, D.W., et al.: Design and development of polymers for gene delivery. Nature Reviews Drug Discovery 4(7), 581–593 (2005)

    Article  Google Scholar 

  3. Blasberg, R.G., Tjuvajev, A.G.: Molecular-genetic imaging: current and future perspectives. Journal of Clinical Investigation 111(11), 1620–1629 (2003)

    Article  Google Scholar 

  4. Jacobs, A., et al.: Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358(9283), 727–729 (2001)

    Article  Google Scholar 

  5. Jolly, D.: Viral Vector Systems for Gene-Therapy. Cancer Gene Therapy 1(1), 51–64 (1994)

    MathSciNet  Google Scholar 

  6. Godbey, D.A.B.A.: Liposomes for Use in Gene Delivery. Journal of Drug Delivery 2011, 1–12 (2011)

    Google Scholar 

  7. Fattahi, A., et al.: Preparation and characterization of oligochitosan-tragacanth nanoparticles as a novel gene carrier. Carbohydrate Polymers 97(2), 277–283 (2013)

    Article  Google Scholar 

  8. Choi, Y.H., et al.: Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier. Bioconjugate Chemistry 9(6), 708–718 (1998)

    Article  Google Scholar 

  9. Boussif, O., et al.: A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in-Vivo - Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America 92(16), 7297–7301 (1995)

    Article  Google Scholar 

  10. Haensler, J., Szoka, F.C.: Polyamidoamine Cascade Polymers Mediate Efficient Transfection of Cells in Culture. Bioconjugate Chemistry 4(5), 372–379 (1993)

    Article  Google Scholar 

  11. Lim, Y.B., et al.: Biodegradable polyester, poly[alpha-(4 aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharmaceutical Research 17(7), 811–816 (2000)

    Article  Google Scholar 

  12. Kakizawa, Y., Kataoka, K.: Block copolymer self-assembly into monodispersive nanoparticles with hybrid core of antisense DNA and calcium phosphate. Langmuir 18(12), 4539–4543 (2002)

    Article  Google Scholar 

  13. Leventis, R., Silvius, J.R.: Interactions of Mammalian-Cells with Lipid Dispersions Containing Novel Metabolizable Cationic Amphiphiles. Biochimica Et Biophysica Acta 1023(1), 124–132 (1990)

    Article  Google Scholar 

  14. Gao, X., Huang, L.: A Novel Cationic Liposome Reagent for Efficient Transfection of Mammalian-Cells. Biochemical and Biophysical Research Communications 179(1), 280–285 (1991)

    Article  Google Scholar 

  15. Behr, J.P., et al.: Efficient Gene-Transfer into Mammalian Primary Endocrine-Cells with Lipopolyamine-Coated DNA. Proceedings of the National Academy of Sciences of the United States of America 86(18), 6982–6986 (1989)

    Article  Google Scholar 

  16. Wagner, D.E., Bhaduri, S.B.: Progress and Outlook of Inorganic Nanoparticles for Delivery of Nucleic Acid Sequences Related to Orthopedic Pathologies: A Review. Tissue Engineering Part B-Reviews 18(1), 1–14 (2012)

    Article  Google Scholar 

  17. Zheng, D., et al.: Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proceedings of the National Academy of Sciences of the United States of America 109(30), 11975–11980 (2012)

    Article  Google Scholar 

  18. Giljohann, D.A., et al.: Gene Regulation with Polyvalent siRNA-Nanoparticle Conjugates. Journal of the American Chemical Society 131(6), 2072 (2009)

    Google Scholar 

  19. Mao, H.Q., et al.: Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Controlled Release 70(3), 399–421 (2001)

    Article  Google Scholar 

  20. Lakshminarayanan, A., et al.: Efficient Dendrimer-DNA Complexation and Gene Delivery Vector Properties of Nitrogen-Core Poly(propyl ether imine) Dendrimer in Mammalian Cells. Bioconjugate Chemistry 24(9), 1612–1623 (2013)

    Article  Google Scholar 

  21. Maiti, P.K., Bagchi, B.: Structure and dynamics of DNA-dendrimer complexation: Role of counterions, water, and base pair sequence. Nano Letters 6(11), 2478–2485 (2006)

    Article  Google Scholar 

  22. Copolovici, D.M., et al.: Cell-Penetrating Peptides: Design, Synthesis, and Applications. ACS Nano 8(3), 1972–1994 (2014)

    Article  Google Scholar 

  23. Palm-Apergi, C., Lonn, P., Dowdy, S.F.: Do Cell-Penetrating Peptides Actually “Penetrate” Cellular Membranes? Molecular Therapy 20(4), 695–697 (2012)

    Article  Google Scholar 

  24. Onishi, H., Machida, Y.: Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20(2), 175–182 (1999)

    Article  Google Scholar 

  25. Rao, S.B., Sharma, C.P.: Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. Journal of Biomedical Materials Research 34(1), 21–28 (1997)

    Article  Google Scholar 

  26. Asai, T., et al.: Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochemical and Biophysical Research Communications 444(4), 599–604 (2014)

    Article  MathSciNet  Google Scholar 

  27. Elbakry, A., et al.: Layer-by-Layer Assembled Gold Nanoparticles for siRNA Delivery. Nano Letters 9(5), 2059–2064 (2009)

    Article  Google Scholar 

  28. Guo, S.T., et al.: Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS Nano 4(9), 5505–5511 (2010)

    Article  Google Scholar 

  29. Bulte, J.W.M., Kraitchman, D.L.: Iron oxide MR contrast agents for molecular and cellular imaging. Nmr in Biomedicine 17(7), 484–499 (2004)

    Article  Google Scholar 

  30. Zhu, D.R., et al.: Nanoparticle-Based Systems for T-1-Weighted Magnetic Resonance Imaging Contrast Agents. International Journal of Molecular Sciences 14(5), 10591–10607 (2013)

    Article  Google Scholar 

  31. Dixit, S., et al.: Phospholipid micelle encapsulated gadolinium oxide nanoparticles for imaging and gene delivery. Rsc Advances 3(8), 2727–2735 (2013)

    Article  Google Scholar 

  32. Pan, B.F., et al.: Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Research 67(17), 8156–8163 (2007)

    Article  Google Scholar 

  33. Kamau, S.W., et al.: Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Research 34(5) (2006)

    Google Scholar 

  34. Lee, J.H., et al.: All-in-One Target-Cell-Specific Magnetic Nanoparticles for Simultaneous Molecular Imaging and siRNA Delivery. Angewandte Chemie-International Edition 48(23), 4174–4179 (2009)

    Article  Google Scholar 

  35. Popovtzer, R., et al.: Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano Letters 8(12), 4593–4596 (2008)

    Article  Google Scholar 

  36. Tsien, R.Y.: The green fluorescent protein. Annual Review of Biochemistry 67, 509–544 (1998)

    Article  Google Scholar 

  37. Hernandez, R., Orbay, H., Cai, W.: Molecular Imaging Strategies for In Vivo Tracking of MicroRNAs: A Comprehensive Review. Current Medicinal Chemistry 20(29), 3594–3603 (2013)

    Article  Google Scholar 

  38. Contag, C.H., Bachmann, M.H.: Advances in vivo bioluminescence imaging of gene expression. Annual Review of Biomedical Engineering 4, 235–260 (2002)

    Article  Google Scholar 

  39. Zhou, M.Q., et al.: Assessment of Therapeutic Efficacy of Liposomal Nanoparticles Mediated Gene Delivery by Molecular Imaging for Cancer Therapy. Journal of Biomedical Nanotechnology 8(5), 742–750 (2012)

    Article  Google Scholar 

  40. Yguerabide, J., Yguerabide, E.E.: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - II. Experimental Characterization. Analytical Biochemistry 262(2), 157–176 (1998)

    Article  Google Scholar 

  41. Hellebust, A., Richards-Kortum, R.: Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine 7(3), 429–445 (2012)

    Article  Google Scholar 

  42. Horisberger, M., Rosset, J., Bauer, H.: Colloidal Gold Granules as Markers for Cell-Surface Receptors in Scanning Electron-Microscope. Experientia 31(10), 1147–1149 (1975)

    Article  Google Scholar 

  43. Timothy, L., et al.: Nanoparticles for targeted therapeutics and diagnostics. In: Handbook of Biomedical Optics, pp. 697–722. CRC Press. (2011)

    Google Scholar 

  44. Aaron, J., et al.: Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. Journal of Biomedical Optics 12(3) (2007)

    Google Scholar 

  45. El-Sayed, I.H., Huang, X.H., El-Sayed, M.A.: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Letters 5(5), 829–834 (2005)

    Article  Google Scholar 

  46. Skala, M.C., et al.: Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres. Nano Letters 8(10), 3461–3467 (2008)

    Article  Google Scholar 

  47. Yang, X.M., et al.: Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. Nano Letters 7(12), 3798–3802 (2007)

    Article  Google Scholar 

  48. Durr, N.J., et al.: Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Letters 7(4), 941–945 (2007)

    Article  MathSciNet  Google Scholar 

  49. Holliger, P., Hudson, P.J.: Engineered antibody fragments and the rise of single domains. Nature Biotechnology 23(9), 1126–1136 (2005)

    Article  Google Scholar 

  50. Lee, S., Xie, J., Chen, X.Y.: Peptide-Based Probes for Targeted Molecular Imaging. Biochemistry 49(7), 1364–1376 (2010)

    Article  Google Scholar 

  51. Reubi, J.C., Maecke, H.R.: Peptide-Based Probes for Cancer Imaging. Journal of Nuclear Medicine 49(11), 1735–1738 (2008)

    Article  Google Scholar 

  52. Lin, G.M., et al.: Biodegradable Nanocapsules as siRNA Carriers for Mutant K-Ras Gene Silencing of Human Pancreatic Carcinoma Cells. Small 9(16), 2757–2763 (2013)

    Article  Google Scholar 

  53. Lee, S.Y., et al.: Shell cross-linked polyethylenimine-modified micelles for temperature-triggered drug release and gene delivery. Rsc Advances 4(101), 57702–57708 (2014)

    Article  Google Scholar 

  54. Mehrotra, S., Lee, I., Chan, C.: Multilayer mediated forward and patterned siRNA transfection using linear-PEI at extended N/P ratios. Acta Biomaterialia 5(5), 1474–1488 (2009)

    Article  Google Scholar 

  55. McKenzie, D.L., et al.: Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjugate Chemistry 11(6), 901–909 (2000)

    Article  Google Scholar 

  56. Handwerger, R.G., Diamond, S.L.: Biotinylated photocleavable polyethylenimine: Capture and triggered release of nucleic acids from solid supports. Bioconjugate Chemistry 18(3), 717–723 (2007)

    Article  Google Scholar 

  57. Dieguez, L., et al.: Electrochemical tuning of the stability of PLL/DNA multilayers. Soft Matter 5(12), 2415–2421 (2009)

    Article  Google Scholar 

  58. Saurer, E.M., et al.: Assembly of erodible, DNA-containing thin films on the surfaces of polymer microparticles: Toward a layer-by-layer approach to the delivery of DNA to antigen-presenting cells. Acta Biomaterialia 5(3), 913–924 (2009)

    Article  Google Scholar 

  59. Schuler, C., Caruso, F.: Decomposable hollow biopolymer-based capsules. Biomacromolecules 2(3), 921–926 (2001)

    Article  Google Scholar 

  60. Newman, C.M.H., Bettinger, T.: Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Therapy 14(6), 465–475 (2007)

    Article  Google Scholar 

  61. Uthaman, S., et al.: Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy. BioMed Research International

    Google Scholar 

  62. Dobson, J.: Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Therapy 13(4), 283–287 (2006)

    Article  Google Scholar 

  63. Cherukuri, P., Glazer, E.S., Curleya, S.A.: Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews 62(3), 339–345 (2010)

    Article  Google Scholar 

  64. Truong, N.P., et al.: An influenza virus-inspired polymer system for the timed release of siRNA. Nature Communications 4 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonjee Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Park, Y. (2016). Nanoparticles for Imaging and Non-viral Gene Therapy. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics