Skip to main content

Prediction of the Impact of Severe Accidents at NPP on Radionuclide Contamination of the Near-Surface Environment

  • Chapter
Overland Flow Dynamics and Solute Transport

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 26))

Abstract

The fission of uranium or plutonium isotopes normally used as the fuel in nuclear reactors generates radioactive fission products, radionuclides. For nuclear reactors under normal operation and in a number of events, these radionuclides are prevented from escaping to the environment by several physical barriers (Högberg 2013). However, as experience shows, it cannot be totally excluded that at any time events occur. If all barriers fail, there is a potential substantial release of radionuclides from the damaged reactor to the environment. These aerosol-bound radionuclides being widely dispersed in the atmosphere can be removed from the atmosphere and brought to the earth surface by dry or wet deposition. The other pathway for radionuclides is connected with radioactive wastewater leak directly from the damaged reactor to the subsurface environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarkrog A, Dahlgaard H, Nielsen SP (1997) Radioactive inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990–1995). Sci Total Environ 201:137–154

    Article  CAS  Google Scholar 

  • Accident Analysis for Nuclear Power Plants. Safety Reports Series 23 (2020) IAEA, Vienna, p 121

    Google Scholar 

  • Atlas of the EURT, East Ural Radioactive Trace (2013) Izrael YA. IGCE Roshydromet and RAS, «Infosphere» Foundation, Moscow, p 140

    Google Scholar 

  • Beloyarsk NPP (2011) Unit 4. Final report on safety assessment. Book 4. Sect. 15.3. Analysis of the design beyond accidents. “OKBM Afrikantov”. BL4-0-0-OOOB-001/15.4

    Google Scholar 

  • Bixio AC, Gambolati G, Panikoni C et al (2002) Modeling groundwater–surface water interactions including effects of morphogenetic depressions in the Chenobyl exclusion zone. Environ Geol 42(2–3):162–177

    Article  Google Scholar 

  • Bublias VN, Shestopalov VM (2001) Anomaly zones and their role in redistribution of radionuclides between soils and aquifers. Water exchange in hydrogeological structures and Chernobyl catastrophe. Institute of Geological Sciences. Ukrainian Acad Sci Kiev 1:251–356

    Google Scholar 

  • Bulgakov AA, Konoplev AV, Shveikin YV et al (1999) Experimental study and prediction of dissolved radionuclide wash-off by surface runoff from non-agricultural watersheds/contaminated Forests. Recent developments in risk identification and future perspectives Part 1, NATO science series 2. Environ Secur 58:102–112

    Google Scholar 

  • Cambray RS, Playford K, Lewis GN et al (1989) Radioactive fallout in air and rain: results to the end of 1988. AERE-R-13575. Atomic energy authority report, Harwell, UK

    Google Scholar 

  • De Cort M, Dubois G, Fridman SD et al (1998) Atlas of caesium deposition on Europe after the Chernobyl accident. EUR report N 16733, EC, Official Publication of the European Communities. Luxembourg, p 65

    Google Scholar 

  • Downer CW, Ogden FL (2006) Gridded surface subsurface hydrologic analysis (GSSHA). User’s Manual. Version 1.43 for Watershed Modeling System 6.1, p 208

    Google Scholar 

  • Eakins JD, Cambray RS, Chambers KC (1984) The transfer of natural andartificial radionuclides to Brotherswater from its catchment. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history: studies in palaeolimnology and palaeoecology in honour of Winifred Tutin. Leicester University Press, Leicester, pp 125–144

    Google Scholar 

  • Evrard O, Chartin C, Onda Y et al (2013) Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume. Scientific reports 3. Article number: 3079. doi:10.1038/srep03079

  • Flury M (1996) Experimental evidence of transport of pestcides through field soils. J Environ Qual 25:25–45

    Article  CAS  Google Scholar 

  • Foster GR, Flanagan DC, Nearing MA (1995) Chapter 11. Hillslope erosion component. In: Flanagan DC, Nearing MA (eds) Technical documentation. USDA – water erosion prediction project (WEPP). NSERL. Report N10. National Soil Erosion Research Laboratory, West Lafayette, Indiana, USA

    Google Scholar 

  • Garcia-Sanchez L, Konoplev A (2009) Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients. J Environ Radioact 100(9):774–778

    Article  CAS  Google Scholar 

  • Garcia-Sanchez L, Konoplev A, Bulgakov A (2005) Radionuclide entrainment coefficients by wash-off derived from plot experiments near Chernobyl. J Radioprot Suppl 40:519–524

    Article  Google Scholar 

  • Gerke HH, Dusek J, Vogel TJ et al (2007) Two-dimensional dual-permeability analyses of a bromide tracer experiment on a tile-drained field. Vadose Zone J 6:651–667

    Article  CAS  Google Scholar 

  • Grant SB, Stewardson MJ, Marusic I (2012) Effective diffusivity and mass flux across the sediment-water interface in streams. Water Resour Res. doi:10.1029/2011WR011148

    Google Scholar 

  • GSSHA Wiki (2014) Gridded surface subsurface hydrologic analysis. http://www.gsshawiki.com

  • Helton J, Muller A, Bayer A (1985) Contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides. Health Phys 48(6):757–771

    Article  CAS  Google Scholar 

  • Högberg L (2013) Root cases and impacts of severe accidents at large nuclear power plants. Ambio 42:267–284

    Article  Google Scholar 

  • Israel YA, Vakulovskii SM, Vetrov VA et al (1990) Chernobyl: radioactive contamination of the environment. Hydrometeoizdat, Moscow, p 223 (in Russian)

    Google Scholar 

  • Ivanov YA, Kashparov VA (2003) Long-Term dynamics of the radioecological situation in Terrestrial ecosystems of the Chernobyl exclusion zone. Environ Soil Pollut Res 1(Special Issue):13–20

    Google Scholar 

  • Konoplev AV, Bulgakov A, Popov V et al (1992) Behaviour of long-lived Chernobyl radionuclides in a soil-water system. J Analyst 117:1041–1047

    Article  CAS  Google Scholar 

  • Konz N, Baenninger D, Konz M (2010) Process identification of soil erosion in steep mountain regions. Hydrol Earth Syst Sci 14:675–686

    Article  Google Scholar 

  • Matsunaga T, Koarashi J, Atarashi-Andoh M et al (2013) Comparison of the vertical distributions of Fukushima nuclear accident radiocesium in soil before and after the first rainy season, with physicochemical and mineralogical interpretations. Sci Total Environ 447:301–314

    Article  CAS  Google Scholar 

  • Molchanova IV, Karavaeva EN, Mikchailovskaya LN (2009) Results of long-term radio-ecological investigations of the natural ecosystems in zones of liquid waste discharge from Beloyarskaya NPP. Prob Radiat Safety 4:20–27

    Google Scholar 

  • Monte L, Brittain JE, Håkanson L et al (2004) Review and assessment of models for predicting the migration of radionuclides from catchments. J Environ Radioact 75:83–103

    Article  CAS  Google Scholar 

  • Nagai H, Katata G, Terada H (2014) Source term estimation of I-131 and Cs-137 discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. In: Takahashi S (ed) Radiation monitoring and dose estimation of the Fukushima nuclear accident. Springer, Tokyo, pp 155–173

    Chapter  Google Scholar 

  • Nalbandyan A, Ytre-Eide MA, Thørring H (2012) Potential consequences in Norway after a hypothetical accident at Leningrad nuclear power plant. Potential release, fallout and impacts on the environment. Norwegian Radiation Protection Authority, Østerás

    Google Scholar 

  • Nelson EJ, McCarthy JE, Paudel M et al (2012) Watershed erosion evaluation of empirical and physical models at Aguacate Reservoir. In: Munoz RM (ed) River Flow. pp 889–896

    Google Scholar 

  • Nieber JL (2001) The relation of preferential flow to water quality, and its theoretical and experimental quantification. Preferential flow. Water movement and chemical transport in the environment. In: Proceedings of the 2nd international symposium. Honolulu, Hawaii, pp 1–10

    Google Scholar 

  • Nilsson K, Jensen SB, Carlsen L (1985) The migration chemistry of strontium. Eur Appl Res Rept Nucl Sci Technol 7(1):149–200

    CAS  Google Scholar 

  • Otosaka S, Kobayashi T (2013) Sedimentation and remobilization of radiocesium in the coastal area of Ibaraki, 70 km south of the Fukushima Dai-ichi Nuclear Power Plant. Environ Monit Assess 185:5419–5433

    Article  CAS  Google Scholar 

  • Owens PN, Walling DE, He Q et al (1997) The use of caesium-137 measurements to establish a sediment budget for the Start catchment, Devon, UK. Hydrol Sci 42(3):405–423

    Article  Google Scholar 

  • Poręba GJ (2006) Caesium-137 as a soil erosion tracer: a review. Geochronometria 25:37–46

    Google Scholar 

  • Pozolotina VN, Molchanova IV, Mikhaylovskaya LN et al (2012) The current state of terrestrial ecosystems in the Eastern Ural Radioactive Trace. In: Gerada JG (ed) Radionuclides: sources, properties and hazards. Nova Science Publishers, Huntington, pp 1–21

    Google Scholar 

  • Romanov GN, Nikipelov BV, Drozhko EG (1990) The Kyshtym accident: causes, scale and radiation characteristics. Proceedings of Seminar on Comparative Assessment of the Environmental Impact of Radionuclides Released during Three Major Nuclear Accidents: Kyshtym Windscale, Chernobyl, Commission of the European Communities, EUR 13574, 1–5 October, Luxembourg, pp 25–40

    Google Scholar 

  • Rumynin VG (2011) Subsurface solute transport models and case histories (with applications to radionuclide migration), vol 25, Theory and applications of transport in porous media. Springer, Dordrecht, p 815

    Book  Google Scholar 

  • Smith JT, Voitsekhovitch OV, Konoplev AV et al (2005) Radioactivity in aquatic systems. In: Smith JT, Beresford NA (eds) Chernobyl catastrophe and consequences. Praxis Publishing Ltd, Chcester, pp 139–181

    Chapter  Google Scholar 

  • Shestakov VM, Pozdniakov SP (2003) Geohydrology. IKC “Academkniga”, Moscow, p 176 (in Russian)

    Google Scholar 

  • Shestopalov VM, Bohuslavsky AS, Bublias VN (2007) Assessment of groundwater protection with respect to preferential flow zones. Institute of Geological Sciences. Ukrainian Academy of Sciences, Kiev, p 120

    Google Scholar 

  • Shestopalov VM, Rudenko YF, Bohuslavsky AS et al (2006) Chernobyl-born radionuclides: groundwater protectability with respect to preferential flow zones. In: Vereecken H, Binley A, Revil A, Titov K (eds) Applied hydrogeophysics. NATO Science Series, Springer, Dordrecht, pp 341–383

    Google Scholar 

  • Steenhuis TS, Bodnar M, Geohring LD (1997) A simple model for predicting solute concentration in agricultural tile lines shortly after application. Hydrol Earth Syst Sci 4:823–833

    Article  Google Scholar 

  • The release, dispersion and deposition of radionuclides. Chernobyl: Assessment of Radiological and Health Impact Update of Chernobyl: Ten Years On (2002)

    Google Scholar 

  • Ueda S, Hasegawa H, Kakiuchi H (2013) Fluvial discharges of radiocaesium from watersheds contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, Japan. J Environ Radioact 118:96–104

    Article  CAS  Google Scholar 

  • Utkin VI, Chebotina MY, Evstigneev AV (2000) Radioactive disasters of the Ural. Ural Branch of the Russian Academy of Sciences, Ekaterinburg, p 94

    Google Scholar 

  • Wallach R, Jury WA, Spencer WF (1989) The concept of convective mass transfer for prediction of surface-runoff pollution by soil surface applied chemicals. J Trans ASAE 32:906–912

    Article  Google Scholar 

  • Wicks JM, Bathurst JC (1996) SHESED: a physically based, distributed erosion and sediment component for the SHE Hydrological Modeling System. J Hydrol 175:213–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rumynin, V.G. (2015). Prediction of the Impact of Severe Accidents at NPP on Radionuclide Contamination of the Near-Surface Environment. In: Overland Flow Dynamics and Solute Transport. Theory and Applications of Transport in Porous Media, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-21801-4_7

Download citation

Publish with us

Policies and ethics