Skip to main content

Manufacturing and Characterization of Anisotropic Membranes for Micro Air Vehicles

  • Conference paper
Mechanics of Composite and Multi-functional Materials, Volume 7

Abstract

This paper presents a solution for the production process of a anisotropic polymeric membrane developed for micro air vehicle (MAV) wings, and validates numerical models of the composite membrane with mechanical testing. The anisotropic properties of the membrane are achieved through consideration of material selection, fiber ratio, fiber pretension, and void formation in a spandex-fiber reinforced silicone-matrix. Direct analysis and composites micromechanics equations are used to model the composite membrane with the ability to predict material properties and response under various loading conditions including pressure distributions. Digital image correlation is used in conjunction with tensile tests and “hydrostatic” pressure differential tests to characterize the response of the membrane to various loading conditions. The non-isotropic properties of the composite membrane result in deflection fields that vary with respect to direction under a uniform pressure gradient across the membrane. With further development of the manufacturing process, spandex reinforced silicone membranes yield promising results as a future MAV membrane material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albertani, R., Hubel, T., Swartz, S.M., Breuer, K.S., Evers, J.: In-flight wing-membrane strain measurements on bats. In: SEM annual conference and exposition on experimental and applied mechanics 2010, Indianapolis, 2010

    Google Scholar 

  2. Goulbourne, N., Wang, Y., Son, S., Skulborstad, A.: Microstructure and material characterization of bat wing tissue for active skin composites. In: 18th International conference on composite materials, Jeju, 2011

    Google Scholar 

  3. Skulborstad, A.J., Goulbounrne, N.: Biaxial mechanical characterization of bat wing skin and development of biomimetic constructs. In: ASME 2013 conference on smart materials, adaptive structures and intelligent systems, SMASIS 2013, Snowbird, 2013

    Google Scholar 

  4. Ifu, P., Ettinger, S., Jenkins, D., Martinez, L.: Composite materials for micro air vehicles. In: 46th International SAMPE symposium and exhibition—2001 a materials and processes odyssey, Long Beach, 2001

    Google Scholar 

  5. Albertani, R., Stanford, B., Hubner, J., Ifju, P.: Aerodynamic coefficients and deformation measurements on flexible micro air vehicle wings. Exp. Mech. 47(5), 625–635 (2007)

    Article  Google Scholar 

  6. Stanford, B., Ifu, P., Albertani, R., Shyy, W.: Fixed membrane wings for micro air vehicles: experimental characterization. Prog. Aerosp. Sci. 44(4), 258–294 (2008)

    Article  Google Scholar 

  7. Abudaram, Y.J., Ifu, P.G., Hubner, J.P., Ukeiley, L.: Controlling pre-tension of silicone membranes on micro air vehicle flexible wings. J. Strain Anal. Eng. Design. 49(3), 161–170 (2014)

    Google Scholar 

  8. Bao, X., Bontemps, A., Grondel, S., Cattan, E.: Design and fabrication of insect-inspired composite wings for MAV application using MEMS technology. J. Micromech. Microeng. 21(12), (2011)

    Google Scholar 

  9. Albertani, R., Stanford, B., Hubner, J.P., Ifju, P.: Aerodynamic characterization and deformation measurements of a flexible wing micro air vehicle. In: 2005 SEM annual conference and exposition on experimental and applied mechanics, Portland, 2005

    Google Scholar 

  10. Solcia, T., Morandini, M., Masarati, P.: A membrane element for micro-aerial vehicle fluid-structure interaction. In: 2nd Joint international conference on multibody system dynamics, Stuttgart, 2012

    Google Scholar 

  11. Aliol, M.: Coupled fluid-structure simulation of flapping wings. Master’s thesis, Politecnico di Milano (2011)

    Google Scholar 

  12. Alioli, M., Masarati, P., Morandini, M.: Coupled multibodyfluid dynamics simulation of flapping wings. In: Proceedings of ASME IDETC/CIE, Portland, 2013

    Google Scholar 

  13. Carpenter, T., Albertani, R.: Aerodynamic load estimation: pressure distribution from virtual strain sensors for a pliant membrane wing. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Boston, 2013

    Google Scholar 

  14. Quaranta, G., Masarati, P., Mantegazza, P.: A conservative mesh-free approach for fluid structure interface problems. In: Coupled Problems, Santorini, 2005

    Google Scholar 

  15. Daniel, I.M., Ishai, O.: Engineering mechanics of composite materials. Oxford University Press, New York, NY (2006)

    Google Scholar 

  16. Masarati, P., Morandini, M., Paolo, M.: An efficient formulation for general-purpose multibody/multiphysics analysis. J. Comput. Nonlinear Dyn. 9(4), 041001 (2014). doi:10.1115/1.4025628

    Article  Google Scholar 

  17. Hoffman, J., Johnson, C.: Computational turbulent incompressible flow. Appl. Math. Body Soul 4 (2007). doi: 10.1007/978-3-540-46533-1

    Google Scholar 

  18. Simo, J., Rifai, M.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29(8), 1595–1638 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Andelfinger, U., Ramm, E.: EAS-elements for two-dimensional, threedimensional, plate and shell structures and their equivalence to HR-elements. Int. J. Numer. Methods Eng. 36(8), 1311–1337 (1993)

    Article  MATH  Google Scholar 

  20. Alioli, M., Morandini, M., Masarati, P., Carpenter, T., Roberto, A.: Nonlinear membrane direct and inverse fem analysis. In: ASME IDETC/CIE 2014, Bufflao, 2014

    Google Scholar 

  21. Alioli, M., Morandini, M., Masarati, P., Carpenter, T., Albertani, R.: Nonlinear membrane inverse finite element model for pliant wings. In: AIAA SCITECH, Kissimmee, 2015

    Google Scholar 

  22. Smooth-On. Mold Star 15, 16, and 30 [Online]. http://www.smooth-on.com/tb/files/MOLD_STAR_15_16_30_TB.pdf (2015). Accessed 2 Mar 2015

Download references

Acknowledgments

Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA8655-12-1-2114, technical monitor Dr. Gregg Abate. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright notation thereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Albertani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Wilcox, J., Osterberg, N.B., Albertani, R., Alioli, M., Morandini, M., Masarati, P. (2016). Manufacturing and Characterization of Anisotropic Membranes for Micro Air Vehicles. In: Ralph, C., Silberstein, M., Thakre, P., Singh, R. (eds) Mechanics of Composite and Multi-functional Materials, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21762-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21762-8_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21761-1

  • Online ISBN: 978-3-319-21762-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics