Skip to main content

Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution

  • Chapter
The Alkali Metal Ions: Their Role for Life

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 16))

Abstract

Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm−3 in mature maternal milk) to high values (0.14 mol dm−3 in blood plasma). While many data on the concentration of Na+ and K+ in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K < 2) and depends on the charge of the ligand, owing to the ionic nature of the interactions. At the same time, the size of the cation is an important factor that influences the stability: very often, but not always (e.g., for sulfate), it follows the trend Li+ > Na+ > K+ > Rb+ > Cs+. For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na+ complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

Please cite as: Met. Ions Life Sci. 16 (2016) 133–166

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. S. Harned, B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold Pub. Corp., New York, 1958, pp. 803.

    Google Scholar 

  2. C. Lentner, Geigy Scientific Tables, 8th edn., Ed C. Lentner, CIBA-Geigy, Basel, Switzerland, 1983.

    Google Scholar 

  3. J. Buffle, Complexation Reactions in Aquatic Systems: An Analytical Approach, Ellis Horwood, Chichester, 1988, pp. 692.

    Google Scholar 

  4. W. Stumm, J. J. Morgan, Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters, 3rd edn., John Wiley & Sons, Inc., New York, 1996, pp. 1040.

    Google Scholar 

  5. I. Grenthe, I. Puigdomenech, Modelling in Aquatic Chemistry, Eds I. Grenthe, I. Puigdomenech, OECD, Paris, 1997, pp. 777.

    Google Scholar 

  6. F. J. Millero, Physical Chemistry of Natural Waters, John Wiley & Sons, Inc., New York, 2001, pp. 654.

    Google Scholar 

  7. R. M. Roat-Malone, Bioinorganic Chemistry: A Short Course, 2nd edn., John Wiley & Sons, Inc., Hoboken, NJ, 2007, pp. 544.

    Book  Google Scholar 

  8. R. R. Crichton, Biological Inorganic Chemistry, 2nd edn., A New Introduction to Molecular Structure and Function, Elsevier, Amsterdam, 2012, pp. 472.

    Google Scholar 

  9. Elements and Their Compounds in the Environment, 2nd edn., Eds E. Merian, M. Anke, M. Ihnat, M. Stoeppler, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004, pp. 1773.

    Google Scholar 

  10. D. M. Templeton, F. Ariese, R. Cornelis, L. G. Danielsson, H. Muntau, H. P. van Leeuwen, R. Lobinski, Pure Appl. Chem. 2000, 72, 1453–1470.

    Article  CAS  Google Scholar 

  11. L. G. Sillén, A. E. Martell, Stability Constants of Metal Ion Complexes, Special Publ. 17, The Chemical Society, Wiley, London, 1964.

    Google Scholar 

  12. L. G. Sillén, A. E. Martell, Stability Constants of Metal Ion Complexes. Supplement Special Publ. 25, The Chemical Society, Wiley, London, 1964.

    Google Scholar 

  13. E. Hogfeldt, Stability Constants of Metal-Ion Complexes. Part A: Inorganic Ligands, IUPAC Chemical Data Series, Pergamon Press, Oxford, 1982, pp. 310.

    Google Scholar 

  14. P. M. May, K. Muray, Talanta 1991, 38, 1419–1426.

    Article  CAS  PubMed  Google Scholar 

  15. D. Pettit, K. Powell, IUPAC Stability Constants Database, Academic Software, Otley, UK, 2004.

    Google Scholar 

  16. A. E. Martell, R. M. Smith, R. J. Motekaitis, NIST Standard Reference Database 46, version 8, Gaithersburg, 2004.

    Google Scholar 

  17. Y. Marcus, G. Hefter, Chem. Rev. 2006, 106, 4585–4621.

    Article  CAS  PubMed  Google Scholar 

  18. P. G. Daniele, C. Foti, A. Gianguzza, E. Prenesti, S. Sammartano, Coord. Chem. Rev. 2008, 252, 1093–1107.

    Article  CAS  Google Scholar 

  19. S. Berto, P. G. Daniele, G. Lando, E. Prenesti, S. Sammartano, Int. J. Electrochem. Sci. 2012, 7, 10976–10986.

    CAS  Google Scholar 

  20. A. Braibanti, G. Ostacoli, P. Paoletti, L. D. Pettit, S. Sammartano, Pure Appl. Chem. 1987, 59, 1721–1728.

    Article  CAS  Google Scholar 

  21. R. P. Buck, S. Rondinini, A. K. Covington, F. G. K. Baucke, C. M. A. Brett, M. F. Camoes, M. J. T. Milton, T. Mussini, R. Naumann, K. W. Pratt, P. Spitzer, G. S. Wilson, Pure Appl. Chem. 2002, 74, 2169–2200.

    Article  CAS  Google Scholar 

  22. A. De Robertis, C. De Stefano, S. Sammartano, C. Rigano, Talanta 1987, 34, 933–938.

    Article  PubMed  Google Scholar 

  23. P. G. Daniele, A. De Robertis, C. De Stefano, S. Sammartano, C. Rigano, J. Chem. Soc. Dalton Trans. 1985, 2353–2361.

    Google Scholar 

  24. C. De Stefano, D. Milea, A. Pettignano, S. Sammartano, Anal. Bioanal. Chem. 2003, 376, 1030–1040.

    Article  PubMed  CAS  Google Scholar 

  25. R. M. Cigala, M. Cordaro, F. Crea, C. De Stefano, V. Fracassetti, M. Marchesi, D. Milea, S. Sammartano, Ind. Eng. Chem. Res. 2014, 53, 9544–9553.

    Article  CAS  Google Scholar 

  26. Activity Coefficients in Electrolyte Solutions, Ed R. M. Pytkowicz, Vol. 1, CRC Press, Inc., 1979, pp. 288.

    Google Scholar 

  27. Activity Coefficients in Electrolyte Solutions, Ed R. M. Pytkowicz, Vol. 2, CRC Press, Inc., 1979, pp. 330.

    Google Scholar 

  28. F. Crea, C. De Stefano, D. Milea, A. Pettignano, S. Sammartano, Bioinorg. Chem. Appl. 2015, 2015, pp. 12, ID 267985.

    Google Scholar 

  29. P. G. Daniele, M. Grasso, C. Rigano, S. Sammartano, Ann. Chim. (Rome) 1983, 73, 495–515.

    CAS  Google Scholar 

  30. C. F. Baes, R. E. Mesmer, Am. J. Sci. 1981, 281, 935–962.

    Article  CAS  Google Scholar 

  31. K. Popov, L. H. J. Lajunen, A. Popov, H. Rönkkömäki, M. Hannu-Kuure, A. Vendilo, Inorg. Chem. Commun. 2002, 5, 223–225.

    Article  CAS  Google Scholar 

  32. F. J. Millero, J. Phys. Chem. 1970, 74, 356–362.

    Article  CAS  Google Scholar 

  33. K. Johnson, R. M. Pytkowicz, Am. J. Sci. 1978, 278, 1428–1447.

    Article  CAS  Google Scholar 

  34. A. De Robertis, C. Rigano, S. Sammartano, O. Zerbinati, Thermochim. Acta 1987, 115, 241–248.

    Article  Google Scholar 

  35. A. A. Reznikov, V. A. Shaposhnik, Russ. J. Phys. Chem. A 2007, 81, 179–181.

    Article  CAS  Google Scholar 

  36. R. Heyrovská, J. Electrochem. Soc. 1996, 143, 1789–1793.

    Article  Google Scholar 

  37. P. G. Daniele, C. Rigano, S. Sammartano, Inorg. Chim. Acta 1982, 63, 267–272.

    Article  CAS  Google Scholar 

  38. E. C. Righellato, C. W. Davies, Trans. Faraday Soc. 1930, 26, 592–600.

    Article  CAS  Google Scholar 

  39. D. Midgley, Chem. Soc. Rev. 1975, 4, 549–568.

    Article  CAS  Google Scholar 

  40. F. P. Daly, C. W. Brown, D. R. Kester, J. Phys. Chem. 1972, 79, 3664–3668.

    Article  Google Scholar 

  41. F. Crea, C. De Stefano, A. Gianguzza, D. Piazzese, S. Sammartano, Talanta 2006, 68, 1102–1112.

    Article  CAS  PubMed  Google Scholar 

  42. P. G. Daniele, A. De Robertis, C. De Stefano, A. Gianguzza, S. Sammartano, J. Solution Chem. 1991, 20, 495–515.

    Article  CAS  Google Scholar 

  43. R. M. Smith, R. A. Alberty, J. Phys. Chem. 1956, 60, 180–184.

    Article  CAS  Google Scholar 

  44. C. De Stefano, C. Foti, A. Gianguzza, J. Chem. Res. 1994, (S) 464 (M) 2639–2661.

    Google Scholar 

  45. C. De Stefano, C. Foti, A. Gianguzza, D. Piazzese, Chem. Spec. Bioavail. 1998, 10, 19–26.

    Article  Google Scholar 

  46. F. Crea, C. De Stefano, D. Milea, S. Sammartano, Coord. Chem. Rev. 2008, 252, 1108–1120.

    Article  CAS  Google Scholar 

  47. F. Crea, P. Crea, C. De Stefano, D. Milea, S. Sammartano, J. Mol. Liq. 2008, 138, 76–83.

    Article  CAS  Google Scholar 

  48. N. Veiga, J. Torres, I. Macho, K. Gomez, G. Gonzalez, C. Kremer, Dalton Trans. 2014, 43, 16238–16251.

    Article  CAS  PubMed  Google Scholar 

  49. R. M. Cigala, F. Crea, G. Lando, D. Milea, S. Sammartano, J. Chem. Thermodyn. 2010, 42, 1393–1399.

    Article  CAS  Google Scholar 

  50. A. M. Bond, G. T. Hefter, Critical Survey of Stability Constants and Related Thermodynamic Data of Fuoride Complexes in Aqueous Solution, Ed. IUPAC, Pergamon Press, Oxford (UK), 1980, pp. 67.

    Google Scholar 

  51. G. R. Miller, D. R. Kester, Mar. Chem. 1976, 4, 67–82.

    Article  CAS  Google Scholar 

  52. F. J. Rawson, A. J. Downard, K. H. Baronian, Sci. Rep. 2014, 4, pp. 9, ID:5216.

    Google Scholar 

  53. A. De Robertis, C. Rigano, S. Sammartano, Ann. Chim. (Rome) 1984, 74, 33–39.

    Google Scholar 

  54. S. Capone, A. De Robertis, C. De Stefano, R. Scarcella, J. Chem. Res. 1986, (S) 412.

    Google Scholar 

  55. S. Capone, A. De Robertis, S. Sammartano, C. Rigano, Thermochim. Acta 1986, 102, 1–14.

    Article  CAS  Google Scholar 

  56. M. T. Beck, Chemistry of Complex Equilibria, Van Nostrand Reinhold, London, 1970, pp. 285.

    Google Scholar 

  57. W. A. Eaton, P. George, G. I. H. Hanania, J. Phys. Chem. 1967, 71, 2016–2021.

    Article  CAS  PubMed  Google Scholar 

  58. J. M. Pratt, R. J. P. Williams J. Chem. Soc. A 1967, 1291–1298.

    Google Scholar 

  59. J. Z. Yang, P. S. Song, D. B. Wang, J. Chem. Thermodyn. 1997, 29, 1343–1351.

    Article  CAS  Google Scholar 

  60. A. Bousher, J. Coord. Chem. 1995, 34, 1–11.

    Article  CAS  Google Scholar 

  61. L. M. Rowe, L. B. Tran, G. Atkinson, J. Solution Chem. 1989, 18, 675–689.

    Article  CAS  Google Scholar 

  62. H. R. Rogers, C. M. G. Van Den Berg, Talanta 1988, 35, 271–275.

    Article  CAS  PubMed  Google Scholar 

  63. A. Gianguzza, D. Milea, F. J. Millero, S. Sammartano, Mar. Chem. 2004, 85, 103–124.

    Article  CAS  Google Scholar 

  64. G. Svehla, Vogel’s Textbook of Macro and Semimicro Qualitative Inorganic Analysis, 5th edn., Longman Group Limited, London, 1979, pp. 605.

    Google Scholar 

  65. F. Crea, A. De Robertis, C. De Stefano, S. Sammartano, Talanta 2007, 71, 948–963.

    Article  CAS  PubMed  Google Scholar 

  66. Metal Ions in Biological Systems: Volume 32: Interactions of Metal Ions with Nucleotides: Nucleic Acids, and Their Constituents, Eds A. Sigel, H. Sigel, Marcel Dekker Inc., New York, 1996, pp. 854.

    Google Scholar 

  67. R. M. Smith, A. E. Martell, Y. Chen, Pure Appl. Chem. 1991, 63, 1015–1080.

    CAS  Google Scholar 

  68. N. C. Melchior, J. Biol. Chem. 1954, 208, 615–628.

    CAS  PubMed  Google Scholar 

  69. M. M. Taqui Khan, A. E. Martell, J. Am. Chem. Soc. 1966, 88, 668–671.

    Article  Google Scholar 

  70. J. M. Blair, Eur. J. Biochem. 1970, 13, 384–390.

    Article  CAS  PubMed  Google Scholar 

  71. M. S. Mohan, G. A. Rechnitz, J. Am. Chem. Soc. 1970, 92, 5839–5842.

    Article  CAS  Google Scholar 

  72. G. A. Rechnitz, M. S. Mohan, Science 1970, 168, 1460.

    Article  CAS  PubMed  Google Scholar 

  73. N. C. Melchior, G. A. Rechnitz, M. S. Mohan, Science 1971, 171, 1267–1268.

    Article  CAS  PubMed  Google Scholar 

  74. E. J. Foot, G. A. Rechnitz, Arch. Biochem. Biophys. 1974, 165, 604–614.

    Article  Google Scholar 

  75. R. K. Kobos, G. A. Rechnitz, Arch. Biochem. Biophys. 1976, 175, 11–20.

    Article  CAS  PubMed  Google Scholar 

  76. R. Calì, S. Musumeci, C. Rigano, S. Sammartano, Inorg. Chim. Acta 1981, 56, L11–L13.

    Article  Google Scholar 

  77. A. De Robertis, C. De Stefano, S. Sammartano, R. Calì, R. Purrello, C. Rigano, J. Chem. Res. 1986, (S) 164 (M) 1301–1347.

    Google Scholar 

  78. C. De Stefano, D. Milea, A. Pettignano, S. Sammartano, Biophys. Chem. 2006, 121, 121–130.

    Article  PubMed  CAS  Google Scholar 

  79. J. Botts, A. Chashin, H. L. Young, Biochemistry 1965, 4, 1788–1796.

    Article  CAS  Google Scholar 

  80. F. Crea, C. De Stefano, A. Gianguzza, D. Piazzese, S. Sammartano, Chem. Spec. Bioavail. 2004, 16, 1–8.

    Article  CAS  Google Scholar 

  81. A. De Robertis, C. De Stefano, A. Gianguzza, Thermochim. Acta 1991, 177, 39–57.

    Article  Google Scholar 

  82. A. De Robertis, C. De Stefano, D. Milea, S. Sammartano, J. Solution Chem. 2005, 34, 1211–1226.

    Article  CAS  Google Scholar 

  83. A. Casale, C. De Stefano, G. Manfredi, D. Milea, S. Sammartano, Bioinorg. Chem. Appl. 2009, 2009, pp. 17, ID 219818.

    Google Scholar 

  84. F. Crea, C. Foti, D. Milea, S. Sammartano, in Cadmium: From Toxicity to Essentiality, Vol. 11 of Metal Ions in Life Sciences, Eds A. Sigel, H. Sigel, R. K. O. Sigel, Springer Science + Business Media B.V., Dordrecht, 2013, Vol. 11, pp. 63–83.

    Google Scholar 

  85. D. Cucinotta, C. De Stefano, O. Giuffrè, G. Lando, D. Milea, S. Sammartano, J. Mol. Liquids 2014, 200, 329–339.

    Article  CAS  Google Scholar 

  86. S. Fiol, I. Brandariz, M. S. de Vicente, Talanta 1995, 42, 797–801.

    Article  CAS  PubMed  Google Scholar 

  87. A. Casale, C. De Stefano, S. Sammartano, P. G. Daniele, Talanta 1989, 36, 903–907.

    Article  CAS  PubMed  Google Scholar 

  88. C. De Stefano, A. Gianguzza, Ann. Chim. (Rome) 1991, 81, 119–130.

    Google Scholar 

  89. C. De Stefano, C. Foti, A. Gianguzza, S. Sammartano, Chem. Spec. Bioavail. 1995, 7, 1–8.

    Google Scholar 

  90. C. Bretti, A. Giacalone, A. Gianguzza, D. Milea, S. Sammartano, Fluid Phase Equilib. 2007, 252, 119–129.

    Article  CAS  Google Scholar 

  91. A. S. Reddy, G. N. Sastry, J. Phys. Chem. A 2005, 109, 8893–8903.

    Article  CAS  PubMed  Google Scholar 

  92. P. Crea, A. De Robertis, C. De Stefano, D. Milea, S. Sammartano, J. Chem. Eng. Data 2007, 1028–1036.

    Google Scholar 

  93. R. M. Cigala, F. Crea, C. De Stefano, G. Lando, D. Milea, S. Sammartano, Amino Acids 2012, 43, 629–648.

    Article  CAS  PubMed  Google Scholar 

  94. C. Bretti, F. Crea, O. Giuffrè, S. Sammartano, J. Solution Chem. 2008, 37, 183–201.

    Article  CAS  Google Scholar 

  95. C. Bretti, F. Crea, C. De Stefano, S. Sammartano, Fluid Phase Equilib. 2008, 272, 47–52.

    Article  CAS  Google Scholar 

  96. S. Cascio, A. De Robertis, C. Foti, Fluid Phase Equilib. 2000, 170, 167–181.

    Article  CAS  Google Scholar 

  97. C. Bretti, R. M. Cigala, C. De Stefano, G. Lando, S. Sammartano, J. Chem. Eng. Data 2013, 59, 143–156.

    Article  CAS  Google Scholar 

  98. A. Casale, A. De Robertis, F. Licastro, C. Rigano, J. Chem. Res. 1990, (S) 204 (M) 1601–1620.

    Google Scholar 

  99. A. De Robertis, C. De Stefano, C. Rigano, S. Sammartano, R. Scarcella, J. Chem. Res. 1985, (S) 42, (M) 629–650.

    Google Scholar 

  100. P. G. Daniele, A. De Robertis, C. De Stefano, A. Gianguzza, S. Sammartano, J. Chem. Res. 1990, (S) 300 (M) 2316–2350.

    Google Scholar 

  101. A. De Robertis, C. Foti, A. Gianguzza, Ann. Chim. (Rome) 1993, 83, 485–497.

    Google Scholar 

  102. A. De Robertis, C. De Stefano, C. Foti, Ann. Chim. (Rome) 1996, 86, 155–166.

    Google Scholar 

  103. A. Katchalsky, Biophys. J. 1964, 4, 9–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. C. De Stefano, A. Gianguzza, D. Piazzese, S. Sammartano, Mar. Chem. 2004, 86, 33–44.

    Article  CAS  Google Scholar 

  105. C. Bretti, F. Crea, C. Rey-Castro, S. Sammartano, React. Funct. Polym. 2005, 65, 329–342.

    Article  CAS  Google Scholar 

  106. C. De Stefano, A. Gianguzza, D. Piazzese, S. Sammartano, React. Funct. Polym. 2003, 55, 9–20.

    Article  Google Scholar 

  107. F. Crea, C. De Stefano, F. J. Millero, V. K. Sharma, J. Solution Chem. 2004, 33, 1349–1367.

    Article  CAS  Google Scholar 

  108. R. M. Cigala, F. Crea, S. Sammartano, J. Mol. Liq. 2008, 143, 129–133.

    Article  CAS  Google Scholar 

  109. R. M. Cigala, F. Crea, C. De Stefano, S. Sammartano, J. Chem. Eng. Data 2009, 54, 2137–2139.

    Article  CAS  Google Scholar 

  110. C. Bretti, R. M. Cigala, F. Crea, S. Sammartano, Talanta 2007, 72, 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  111. C. Bretti, C. De Stefano, C. Foti, O. Giuffrè, S. Sammartano, J. Solution Chem. 2009, 38, 1225–1245.

    Article  CAS  Google Scholar 

  112. G. Crisponi, V. M. Nurchi, J. I. Lachowicz, M. Crespo-Alonso, M. A. Zoroddu, M. Peana, Coord. Chem. Rev. 2015, 284, 278–285.

    Article  CAS  Google Scholar 

  113. G. Anderegg, Critical Survey of Stability Constants of EDTA Complexes, Pergamon Press, Oxford (UK), 1977, pp. 48.

    Google Scholar 

  114. G. Anderegg, Pure Appl. Chem. 1982, 54, 2693–2758.

    Article  CAS  Google Scholar 

  115. G. Anderegg, F. Arnaud-Neu, R. Delgado, J. Felcman, K. Popov, Pure Appl. Chem. 2005, 77, 1445–1495.

    Article  CAS  Google Scholar 

  116. K. Popov, H. Wanner, In Biogeochemistry of Chelating Agents, Eds B. Nowack, J. M. Vanbriesen, American Chemical Society, Washington DC, 2005, pp. 50.

    Google Scholar 

  117. G. Anderegg, Helv. Chim. Acta 1967, 50, 2333–2340.

    Article  CAS  Google Scholar 

  118. G. Anderegg, Z. Naturforsch. B 1976, 31, 786–789.

    Article  Google Scholar 

  119. J. I. Watters, O. E. Schupp III, J. Inorg. Nucl. Chem. 1968, 30, 3359–3362.

    Article  CAS  Google Scholar 

  120. G. Schwarzenbach, E. Kampitsch, R. Steiner, Helv. Chim. Acta 1945, 28, 828–840.

    Article  CAS  Google Scholar 

  121. G. Schwarzenbach, H. Ackermann, Helv. Chim. Acta 1947, 30, 1798–1804.

    Article  CAS  Google Scholar 

  122. C. De Stefano, S. Sammartano, A. Gianguzza, D. Piazzese, Anal. Bioanal. Chem. 2003, 375, 956–967.

    PubMed  Google Scholar 

  123. F. Crea, C. De Stefano, A. Gianguzza, D. Piazzese, S. Sammartano, Chem. Spec. Bioavail. 2003, 15, 75–86.

    Article  CAS  Google Scholar 

  124. C. Bretti, C. De Stefano, C. Foti, S. Sammartano, J. Solution Chem. 2013, 42, 1452–1471.

    Article  CAS  Google Scholar 

  125. K. Popov, H. Rönkkömäki, L. H. J. Lajunen, Pure Appl. Chem. 2001, 70, 1641–1677.

    Google Scholar 

  126. A. Alderighi, A. Vacca, F. Cecconi, S. Midollini, E. Chinea, S. Dominguez, A. Valle, D. Dakternieks, A. Duthie, Inorg. Chim. Acta 1999, 285, 39–48.

    Google Scholar 

  127. R. G. G. Russell, Bone 2011, 49, 2–19.

    Article  CAS  PubMed  Google Scholar 

  128. C. Foti, O. Giuffrè, S. Sammartano, J. Chem. Thermodyn. 2013, 66, 151–160.

    Article  CAS  Google Scholar 

  129. R. Carrol, R. Irani, Inorg. Chem. 1967, 6, 1994–1998.

    Article  Google Scholar 

  130. V. P. Vasil’ev, E. V. Kozlovskii, T. B. Marina, Zhur. Neorg. Khim. 1985, 30, 36–40.

    Google Scholar 

  131. C. Bretti, I. Cukrowski, C. De Stefano, G. Lando, J. Chem. Eng. Data 2014, 59, 3728–3740.

    Article  CAS  Google Scholar 

  132. P. Demianov, C. De Stefano, A. Gianguzza, S. Sammartano, Environ. Toxicol. Chem. 1995, 14, 767–773.

    Article  CAS  Google Scholar 

  133. C. Bretti, C. De Stefano, G. Lando, S. Sammartano, Fluid Phase Equilib. 2010, 292, 71–79.

    Article  CAS  Google Scholar 

  134. C. Bretti, R. M. Cigala, C. De Stefano, G. Lando, S. Sammartano, Int. J. Electrochem. Sci. 2013, 8, 10621–10649.

    CAS  Google Scholar 

  135. V. M. Nurchi, G. Crisponi, M. Arca, M. Crespo-Alonso, J. I. Lachowicz, D. Mansoori, L. Toso, G. Pichiri, M. Amelia Santos, S. M. Marques, J. Niclos-Gutierrez, J. M. Gonzalez-Perez, A. Dominguez-Martin, D. Choquesillo-Lazarte, Z. Szewczuk, M. Antonietta Zoroddu, M. Peana, J. Inorg. Biochem. 2014, 141, 132–143.

    Article  CAS  PubMed  Google Scholar 

  136. E. Shchori, N. Nae, J. Jagur-Grodzinski, J. Chem. Soc. Dalton Trans. 1975, 2381–2386.

    Google Scholar 

  137. F. Arnaud-Neu, R. Delgado, S. Chaves, Pure Appl. Chem. 2003, 75, 71–102.

    Article  CAS  Google Scholar 

  138. M. Marangella, M. Petrarulo, C. Vitale, P. G. Daniele, S. Sammartano, D. Coseddu, F. Linari, Clin. Sci. 1991, 81, 483–490.

    Article  CAS  PubMed  Google Scholar 

  139. P. G. Daniele, C. De Stefano, M. Marangella, C. Rigano, S. Sammartano, Biochim. Clin. 1989, 13, 507–510.

    Google Scholar 

  140. N. Ingri, W. Kakołowicz, L. G. Sillén, B. Warnqvist, Talanta 1967, 14, 1261–1286.

    Article  CAS  PubMed  Google Scholar 

  141. D. K. Nordstrom, J. W. Ball, in Complexation of Trace Metals in Natural Waters, Eds C. J. M. Kramer, J. C. Duinker, Nijhoff/Junk, The Hague, 1984, pp. 149–164.

    Google Scholar 

  142. G. Eriksson, Anal. Chim. Acta 1979, 112, 375–383.

    Article  CAS  Google Scholar 

  143. C. De Stefano, P. Princi, C. Rigano, S. Sammartano, Comput. Chem. 1989, 13, 343–359.

    Article  Google Scholar 

  144. J. A. Dyer, P. Trivedi, N. C. Scrivner, D. L. Sparks, Environ. Sci. Technol. 2003, 37, 915–922.

    Article  CAS  PubMed  Google Scholar 

  145. G. Biederman, in Dahlem Workshop on the Nature of Seawater, Dahlem Konferenzen, Berlin, 1975, pp. 339–362.

    Google Scholar 

  146. K. S. Pitzer, J. Phys. Chem. 1973, 77, 268–277.

    Article  CAS  Google Scholar 

  147. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd Edn., Ed. K. S. Pitzer, CRC Press, Inc., Boca Raton, FL, 1991, pp. 542.

    Google Scholar 

  148. L. A. Bromley, AIChE J. 1973, 19, 313–320.

    Article  CAS  Google Scholar 

  149. H. Krienke, J. Barthel, J. Mol. Liq. 1998, 78, 123–138.

    Article  CAS  Google Scholar 

  150. H. Krienke, J. Barthel, Z. Phys. Chem. (Munich) 1998, 204, 71–83.

    Google Scholar 

  151. T. H. Ho, C. C. Lai, Y. H. Liu, S. M. Peng, S. H. Chiu, Chem. Eur. J. 2014, 20, 4563–4567.

    Article  CAS  PubMed  Google Scholar 

  152. Y. H. Lin, C. C. Lai, Y. H. Liu, S. M. Peng, S. H. Chiu, Angew. Chem. Int. Ed. 2013, 52, 10231–10236.

    Article  CAS  Google Scholar 

  153. A. N. Thompson, I. Kim, T. D. Panosian, T. M. Iverson, T. W. Allen, C. M. Nimigean, Nat. Struct. Mol. Biol. 2009, 16, 1317–1324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. K. J. Liu, P. Gast, M. Moussav, S. W. Norby, N. Vahidi, T. Walczak, M. Wu, H. M. Swartz, Biophysics 1993, 90, 5438–5442.

    CAS  Google Scholar 

  155. R. P. Pandian, S. M. Chacko, M. L. Kuppusamy, B. K. Rivera, P. Kuppusamy, Adv. Exp. Med. Biol. 2011, 701, 29–36.

    Article  CAS  PubMed  Google Scholar 

  156. R. P. Pandian, M. Dolgos, C. Marginean, P. M. Woodward, P. C. Hammel, P. T. Manoharan, P. Kuppusamy, J. Mater. Chem. 2009, 19, 4138–4147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. S. Spicuglia, S. Kumar, L. Chasson, D. Payet-Bornet, P. Ferrier, J. Biochem. Bioph. Meth. 2004, 59, 189–194.

    Article  CAS  Google Scholar 

  158. S. A. Akman, J. H. Doroshow, M. Dizdaroglu, Arch. Biochem. Biophys. 1990, 282, 202–205.

    Article  CAS  PubMed  Google Scholar 

  159. G. C. Terstappen, Assay Drug Dev. Technol. 2004, 2, 553–559.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank the University of Messina for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Sammartano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crea, F., De Stefano, C., Foti, C., Lando, G., Milea, D., Sammartano, S. (2016). Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution. In: Sigel, A., Sigel, H., Sigel, R. (eds) The Alkali Metal Ions: Their Role for Life. Metal Ions in Life Sciences, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-21756-7_5

Download citation

Publish with us

Policies and ethics