Skip to main content

Geophysical Characterization of Liquefied Terrains Using the Electrical Resistivity and Induced Polarization Methods: The Case of the Emilia Earthquake 2012

  • Chapter
  • First Online:
Earthquakes and Their Impact on Society

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

Massive surface fracturing, sand upwelling, sand volcanoes, limited blister formation and lateral spreading liquefaction features took place immediately after the main shock of May 20th, 2012 earthquake (ML = 5.9, depth: 6.3 km, max/min hypocentral distance to the test sites: 15–20 km), that struck the Emilia-Romagna Region, Northern Italy (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Zeid, N., Bianchini, G., Santarato, G., & Carmela, V. (2004). Geochemical characterisation and geophysical mapping of Landfill leachates: The Marozzo canal case study (NE Italy). Environmental Geology, 45, 439–447.

    Article  Google Scholar 

  • Abu Zeid N., Bignardi S., Caputo R., Santarato G., Stefani M. (2012). Electrical resistivity tomography investigations on liquefaction and fracturing phenomena at San Carlo. In Anzidei M., Maramai A. and Montone P. (Eds), Annals Of Geophysics, The Emilia (northern Italy) seismic sequence of May-June, 2012: preliminary data and results, (Vol. 55(4), pp. 713–716), Annals Of Geophysics.

    Google Scholar 

  • Al-Shukri, H., Hanan, M., & Tuttle, M. (2006). Three-dimensional imaging of earthquake-induced features with ground penetrating radar. Near Marianna, Arkansas, Seismo, Res, Lett, 77, 505–513.

    Google Scholar 

  • Andrus, R. D., Stokoe, K. H., & Chung, R. M. (1999). Draft guidelines for evaluating liquefaction resistance using shear wave velocity measurements and simplified procedures. NISTIR 6277, National Institute of Standards and Technology, Gaithersburg, Md.

    Google Scholar 

  • Archie G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Trans A.I.M.E. 146:54–62.

    Google Scholar 

  • Barker, R. D. (1990). Investigation of groundwater salinity by resistivity methods. In S. H. Ward (Ed.), Geotechnical and environmental geophysics, 2, 201–212. Investigations in Geophysics Tulsa (Oklahoma): SEG.

    Google Scholar 

  • Bondesan M. (1989). Geomorphological hazards in the Po delta and adjacent areas. Suppl. Geografia Fisica e Dinamica Quaternaria, 2:25–33.

    Google Scholar 

  • Boulanger, R. W., & Idriss, I. M. (2006). Liquefaction susceptibility criteria for silts and clays. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(11), 1413–1426.

    Google Scholar 

  • Bray, J. D. & Sancio, R. B. (2006). Assessment of the liquefaction susceptibility of finegrained soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(9), 1165–1177.

    Google Scholar 

  • Burrato, P., Ciucci, F., & Valensise, G. (2003). An inventory of river anomalies in the Po Plain, Northern Italy: Evidence for active blind thrust faulting. Annales Geophysicae, 46(5), 865–882.

    Google Scholar 

  • Caputo, R., Piscitelli, S., Oliveto, A., Rizzo, E., & Lapenna, V. (2003). The use of electrical resistivity tomography in active tectonic. Examples from the Tyrnavos Basin, Greece. Journal of Geodynamics, 36, 19–35.

    Article  Google Scholar 

  • Carminati, E., Martinelli, G., & Severi, P. (2003). Influence of glacial cycles and tectonics on natural subsidence in the Po Plain (Northern Italy): Insights from 14C ages. Geochemistry, Geophysics, Geosystems, 4(10), 1–14.

    Article  Google Scholar 

  • Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion. A practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52, 289–300.

    Google Scholar 

  • Cremonini S. (1988). Specificità dell’Alto Ferrarese nella problematica evolutiva dell’antica idrografia padana inferiore. In: Grafis (Ed.), Bondeno ed il suo territorio dalle origini al Rinascimento, Bologna, pp. 17–24.

    Google Scholar 

  • deGroot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two dimensional models form magnetotelluric data. Geophysics, 55, 1613–1624.

    Article  Google Scholar 

  • ErtLab. (2014). Multi-phase technolgies and geoastier web pages (http://www.mpt3d.com/ and http://www.geostudiastier.it).

  • Erchul, R. A., & Gularte, R. C. (1982). Electrical resistivity used to measure liquefaction of sand. Journal of the Geotechnical Engineering Division, 108(5), 778–782.

    Google Scholar 

  • Ercoli, M., Pauselli, C., Frigeri, A., Forte, E., & Federico, C. (2013). Geophysical paleoseismology” through high resolution GPR data: A case of shallow faulting imaging in Central Italy. Journal of Applied Geophysics, 90, 27–40.

    Google Scholar 

  • Galli, P. (2000). New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, 324(3), 169–187.

    Google Scholar 

  • Galli P., Castenetto S. & Peronace E. (2012). The MCS macroseismic survey of the Emilia 2012 earthquakes. Annals of Geophysics, 55, 663–672.

    Google Scholar 

  • Gross, R., Green, A. G., Horstmeyer, H., Holliger, K., & Baldwin, J. (2003). 3-D georadar images of an active fault: Efficient data acquisition, processing and interpretation strategies. Subsurface Sensing Technologies and Applications, 4, 19–40.

    Google Scholar 

  • Guidoboni E. (1997). An early project for anti-seismic house in Italy. Pirro Ligorio’s manuscript treatise of 1570–74, in “European Earthquake Engineering”, vol. 4:1–18.

    Google Scholar 

  • Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., & Valensise G. (2007). Catalouge of strong earthquakes in Italy from 461 BC to 1997 and in the Mediterranean area, from 760 BC to 1500. An advanced laboratory of historical seismolgy. http://strong.ingv.it/cfti4med/.

  • Iliceto, V., Santarato, G., & Veronese, S. (1982). An approach to the identification of fine sediments by induced polarization laboratory measurements. Geophysical Prospecting, 30(3), 331–347.

    Article  Google Scholar 

  • Improta, L., Ferranti, L., De Martini, P. M., Piscitelli, S., Bruno, P. P., Burrato, P., et al. (2010). Detecting young, slow-slipping active faults by geologic and multidisciplinary high-resolution geophysical investigations: A case study from the Apennine seismic belt, Italy. Journal of Geophysical Research, 115, B11307.

    Article  Google Scholar 

  • Ishihara, K. (1974). Liquefaction of subsurface soils during earthquakes, Technocrat, 7(3), 1–31.

    Google Scholar 

  • Ishihara, K., Tatsuoka, F., & Yasuda, S. (1975). Undrained deformation and liquefaction of sand under cyclic stresses. Soils and Foundation, 15(1), 29–44.

    Google Scholar 

  • Jinguujia, M., Toprakb, S., & Kunimatsua, S. (2007). Soil Dynamics and Earthquake Engineering, 27, 191–199.

    Google Scholar 

  • Krinitzsky E. L., Gould J. P. & Edinger P. H. (1993). Fundamentals of earthquake resistant construction. John Wiley & Sons., New York.

    Google Scholar 

  • Kuras, O., Beamish, D., Meldrum, P. I., & Ogilvy, R. D. (2006). Fundamentals of the capacitive resistivity technique: G152. Geophysics, 71, G135.

    Google Scholar 

  • Kuras O., Beamish D., Meldrum P. I. & Ogilvy R. D. (2006). Fundamnetals of the capacitive resistivity technique. Geophysics, 71(3), 135–152.

    Google Scholar 

  • Liu, L., & Li, Y. (2001). Identification of liquefaction and deformation features using ground penetrating radar in the New Madrid seismic zone, USA. Journal of Applied Geophysics, 47, 199–215.

    Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44, 131–152.

    Article  Google Scholar 

  • Maurya, D. M., Goyal, B., Patidar, A. K., Mulchandani, N., Thakkar, M. G., & Chamyal, L. S. (2006). Ground penetrating radar imaging of two large sand blow craters related to the 2001 Bhuj earthquake, Kachchh, Western India. Journal of Applied Geophysics, 60, 142–152.

    Article  Google Scholar 

  • McCalpin, J. P. (2009). Paleoseismology. Burlington, MA (USA): Academic Press.

    Google Scholar 

  • Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behaviour (3rd ed.). New York: Wiley.

    Google Scholar 

  • Nakazawa H., Sugano T., & Kohama E. (2012). Case studies on evaluation of liquefaction resistance in terms of combination of surface wave exploration and electrical prospecting. In: Proceedings of the WCEE 2012, Lisbon.

    Google Scholar 

  • Nobes, D. C., Bastin, S., Charlton, G., Cook, R., Gallagher, M., Graham, H., et al. (2013). Geophysical imaging of subsurface earthquake-induced liquefaction features at Christchurch Boys High School, Christchurch, New Zealand. Journal of Environmental and Engineering Geophysics, 18, 255–267.

    Google Scholar 

  • Papathanassiou G., Caputo R. & Rapti-Caputo D. (2012). Liquefaction-induced ground effects triggered by the 20th May, 2012 Emilia-Romagna (Northern Italy) earthquake. Annals of Geophysics, 55(4), 735–742.

    Google Scholar 

  • Pieri M., & Groppi G. (1981). Subsurface geological structure of the PoPlain, Italy. Consiglio Nazionale delle Ricerche, Progetto finalizzato Geodinamica, sotto progetto Modello Strutturale (Vol. 414, pp. 13). Roma (in Italian).

    Google Scholar 

  • Reynolds, J. M. (2011). An Introduction to Applied and Environmental Geophysics (2nd ed.). Wiley Blackwell.

    Google Scholar 

  • Robertson, P. K., Campanella, R. G., Gillespie, D., & Rice, A. (1985). Seismic CPT to measure in-Situ Shear Wave Velocity. Proceedings of Measurement and Use of Shear Wave Velocity for Evaluating Dynamic Soil Properties. Proceedings of a session held in conjunction with the ASCE Convention., ASCE, Denver, CO, USA, pp. 34–48.

    Google Scholar 

  • Robertson P. K., Woeller D. J. & Finn W. D. L. (1992). Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Canadian Geotechnical Journal, 29, 686–695.

    Google Scholar 

  • Sasaki Y. (1992). Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting, 40, 453–464.

    Google Scholar 

  • Schoen J. H. (1996). Physical properties of rocks. Handbook of geophysical exploration (Vol. 18, pp. 583). Pergamon Press, Inc.

    Google Scholar 

  • Seed, H. B. (1979). Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. Journal of the Geotechnical Engineering Division, ASCE, 105(GT2), 201–255.

    Google Scholar 

  • Seed, H. B., & Idriss, I. M. (1967). Analysis of soil liquefaction: Niigata Earthquake. Journal of the Soil Mechanics and Foundation, No. SM6, 108–134.

    Google Scholar 

  • Seed, H. B., & Idriss, I. M. (1982). Ground motions an soil liquefaction during earthquakes. Oakland, CA: Earthquake Engineering Research Institute Monograph.

    Google Scholar 

  • Seed, H. B., & Lee, K. L. (1966). Liquefaction of saturated sands during cyclic loading. Journal of Soil mechanics and Soil Division, ASCE, 92(SM6), 105–134.

    Google Scholar 

  • Seed, H. B., Idriss, I. M., & Arango, I. (1983). Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, 109, 458–482.

    Article  Google Scholar 

  • Seed, R .B., Cetin, O. K., Moss, R. E. S., Kammerer, A. M., Wu, J., Pestana, J. M., Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R.E., & Faris, A. (2003). Recent advances in soil liquefaction engineering: a unified and consistent framework. 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, California, April 30, (pp. 71).

    Google Scholar 

  • Sheriff R. E. (2002). Encyclopedic dictionary of applied geophysics (Vol. 13, pp. 429). SEG (Geophysical References No. 13).

    Google Scholar 

  • Sonmez, H., & Gokceoglu, C. (2005). A liquefaction severity index suggested for engineering practice. Environmental Geology, 48, 81–91.

    Google Scholar 

  • Stokoe, K. H., & Nazarian, S. (1985). Use of Rayleigh waves in liquefaction studies. In R. D. Woods (Ed.), Measurement and use of shear wave velocity for evaluating dynamic soil properties (pp. 1–17). ASCE: New York.

    Google Scholar 

  • Sumner, J. S. (1976). Principles of induced polarization for geophysical exploration: Elsevier, p. 277.

    Google Scholar 

  • Sumner, J. S. (1976). Principles of induced polarization for geophysical exploration. Devlopments in economic geology, 5, 277. Amsterdam: Elsevier.

    Google Scholar 

  • Telford W. M., Geldart L. P. & Sheriff R. E. (1990). Applied Geophysics. Cambridge University Press, Cambridge (U.S.A.), pp. 770.

    Google Scholar 

  • Timofeev V. M. (1994). A new ground resistivity method for engineering and geophysics (pp. 701–715). In Proceedings of Symposium on the Applications of Geophysics to Engineering and Environmental Problems, 6th, Boston, 27–31 March 1994. Denver, CO: Environmental and Engineering Geophysical Society.

    Google Scholar 

  • Tokimatsu, K., & Uchida, A. (1990). Correlation between liquefaction resistance and shear wave velocity. Soils and Foundation, 30, 33–42.

    Article  Google Scholar 

  • Toscani, G., Burrato, P., Di Bucci, D., Seno, S., & Valensise, G. (2009). Plio-quaternary tectonic evolution of the Northern Apennines thrust fronts (Bologna-Ferrara section, Italy): Seismotectonic implications. Boll. Soc. Geol. It., 128(2), 605–613.

    Google Scholar 

  • Toshiyasu, U., Motoki, K., Ryosuke, U., & Noriaki, S. (2008). Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton. Soils and Foundation, 48(1), 87–99.

    Article  Google Scholar 

  • Tuttle, M. P., Collier, J., Wolf, L. W., & Lafferty, R. H. (1999). New evidence for a large earthquake in the New Madrid seismic zone between A.D. 1400 and 1670. Geology, 27(9), 771–774.

    Article  Google Scholar 

  • Wolf, L. W., Collier, J., Tuttle, M., & Bodin, P. (1998). Geophysical reconnaissance of earthquake-induced liquefaction features in the New Madrid seismic zone. Journal of Applied Geophysics, 39, 121–129.

    Article  Google Scholar 

  • Wolf, L. W., Tuttle, M. P., & Park, S. (2006). Geophysical surveys of earthquake-induced liquefaction deposits in the New Madrid seismic zone. Geophysics, 71(6), B223–B270.

    Article  Google Scholar 

  • Yanguo Z., & Yunmin C. (2007). Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 133(8), 959–972.

    Google Scholar 

  • Yanguo Z., Yunmin C., & Daosheng L. (2009). Shear wave velocity-based liquefaction evaluation in the great Wenchuan earthquake: a preliminary case study. Earthquake Engineering and Engineering Vibration, 8, 231–239.

    Google Scholar 

  • Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., et al. (2001). Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenviromental Engineering, 127, 817–833.

    Google Scholar 

  • Zadorozhnaya V. Y. (2008). Resistivity measured by direct and alternating current: why are they different? Advances in Geosciences, 19, 45–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Abu Zeid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abu Zeid, N. (2016). Geophysical Characterization of Liquefied Terrains Using the Electrical Resistivity and Induced Polarization Methods: The Case of the Emilia Earthquake 2012. In: D'Amico, S. (eds) Earthquakes and Their Impact on Society. Springer Natural Hazards. Springer, Cham. https://doi.org/10.1007/978-3-319-21753-6_8

Download citation

Publish with us

Policies and ethics