Skip to main content

Neo-deterministic Definition of Seismic and Tsunami Hazard Scenarios for the Territory of Gujarat (India)

  • Chapter
  • First Online:

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

A reliable and comprehensive characterization of expected seismic ground shaking is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. So far, one of the major problems in classical methods for seismic hazard assessment consisted in the adequate characterization of the attenuation models, which may be unable to account for the complexity of the medium and of the seismic sources and are often weakly constrained by the available observations. Current computational resources and physical knowledge of the seismic waves generation and propagation processes allow nowadays for viable numerical and analytical alternatives to the use of attenuation relations. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic approach (NDSHA), which allows considering a wide range of possible seismic sources as the starting point for deriving scenarios by means of full waveforms modelling. The method does not make use of attenuation relations and, thanks to advanced computational infrastructures, permits to carry on parametric analysis and stability tests that contribute characterizing the related uncertainties, as well as to fill in the unavoidable gaps in available observations. Results from preliminary application of NDSHA method to regional scale seismic hazard assessment (ground motion at bedrock) and tsunami scenarios modelling for the Gujarat territory are illustrated. The resulting estimates are compared with available information about intensities from past earthquakes, as well as with recently developed probabilistic seismic hazard map of Gujarat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acton, C., Priestley, K., Mitra, S., & Gaur, V. (2010). Crustal structure of the Darjeeling-Sikkim Himalaya and southern Tibet. Geophysical Journal International, 184, 829–852.

    Article  Google Scholar 

  • Aki, K. (1987). Strong motion seismology. In M. Erdik & M. Toksöz (Eds.), Strong ground motion seismology, no. 204 in NATO ASI Series, Series C: Mathematical and Physical Sciences. Berlin: Springer.

    Google Scholar 

  • Bisignano, D., Romanelli, F., Peresan, A. (2011). Modeling scenarios of earthquake-generated tsunami for Vietnam coast. In Proceeding for The International Symposium of Grids and Clouds and the Open Grid Forum, Academia Sinica, Taipei, Taiwan, 19–25 March 2011.

    Google Scholar 

  • Chandra, U. (1977). Earthquakes of peninsular India—A seismotectonic studio. Bulletin of Seismological Society of America, 57(5), 1387–1413.

    Google Scholar 

  • Chandra, U. (1978). Seismicity, earthquake mechanisms and tectonics along the Himalayan mountain range and vicinity. Physics of the Earth and Planetary Interiors, 16(2), 109–131.

    Article  Google Scholar 

  • DziewoĹ„ski, A., Chou, T. A., & Woodhouse, J. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825–2852.

    Article  Google Scholar 

  • Ekström, G., Nettles, M., & DziewoĹ„ski, A. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.

    Article  Google Scholar 

  • Fitch, T. (1970). Earthquake mechanisms in the Himalayan, Burmese, and Andaman regions and continental tectonics in central Asia. Journal of Geophysical Research, 75(14), 2699–2709.

    Article  Google Scholar 

  • Gung, Y., & Romanowicz, B. (2004). Q tomography of the upper mantle using three component long period waveforms. Geophysical Journal International, 157, 813–830.

    Article  Google Scholar 

  • Gusev, A. (1983). Descriptive statistical model of earthquake source radiation and its application to an estimation of short-period strong motion. Geophysical Journal of the Royal Astronomical Society, 74(3), 787–808.

    Google Scholar 

  • Gusev, A. (2011). Broadband kinematic stochastic simulation of an earthquake source: a refined procedure for application in seismic hazard studies. Pure and Applied Geophysics, 168(1), 155–200.

    Article  Google Scholar 

  • Gusev, A., & Pavlov, V. M. (2009). Broadband simulation of earthquake ground motion by a spectrum-matching, multiple-pulse technique. Earthquake spectra, 25(2), 257–276.

    Article  Google Scholar 

  • Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., Yalciner, A. C., Mokhtari, M., & Esmaeily, A. (2008). Historical tsunami in the Makran subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering, 35(8–9), 774–786.

    Article  Google Scholar 

  • ISR. (2012). ISR annual report. ISR: Tech. rep. http//:www.isr.gujarat.gov.in

    Google Scholar 

  • Iyengar, R., Sharma, D., & Siddiqui, J. (1999). Earthquake history of India in medieval times. Indian Journal of history of science, 34(3), 181–237.

    Google Scholar 

  • Jaiswal, R., Singh, A., & Rastogi, B. (2009). Simulation of the Arabian Sea tsunami propagation generated due to 1945 Makran earthquake and its effect on western parts of Gujarat (India). Natural Hazards, 48(2), 245–258.

    Article  Google Scholar 

  • Kumar, S., Wesnousky, S. G., Rockwell, T. K., Ragona, D., Thakur, V. C., & Seitz, G. G. (2001). Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India. Science, 294, 2328–2331.

    Article  Google Scholar 

  • Lliboutry, L. (2000). Quantitative geophysics and geology. Berlin: Springer.

    Google Scholar 

  • Magrin, A., Peresan, A., Vaccari, F., Cozzini, F., Rastogi, B., Parvez, I., Panza, G. F. (2012). Definition of seismic and tsunami hazard scenarios by exploiting EU-India Grid e-infrastructures. In Proceedings of the International Symposium on Grids and Clouds (ISGC 2012), February 26–March 2, 2012.

    Google Scholar 

  • Mandal, P. (2006). Sedimentary and crustal structure beneath Kachchh and Saurashtra regions, Gujarat, India. Physics of the Earth and Planetary Interiors, 115, 286–299.

    Article  Google Scholar 

  • Martin, S., & Szeliga, W. (2010). A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bulletin of the Seismological Society of America, 100(2), 562–569.

    Article  Google Scholar 

  • Mitchell, B. J., Cong, L., Ekström, G. (2008). A continent-wide map of 1-Hz Lg coda Q variation across Eurasia and its relation to lithospheric evolution. Journal of Geophysical Research, 113(B04303).

    Google Scholar 

  • Molnar, P., Fitch, T. J., & Wu, F. T. (1973). Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia. Earth and Planetary Science Letters, 19, 101–112.

    Article  Google Scholar 

  • Mourabit, T., Elenean, K. A., Ayadi, A., Benouar, D., Suleman, A. B., Bezzeghoud, M., et al. (2014) Neo-deterministic seismic hazard assessment in North Africa. Journal of seismology, 18(2), 301–318.

    Google Scholar 

  • Okal, E., & Synolakis, C. (2008). Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophysical Journal International, 172, 995–1015.

    Article  Google Scholar 

  • Oldham, T. (1883). A catalogue of Indian earthquakes from the earliest times to the end of 1869 A.D. Memoirs of Geological Survey of India, 29, 163–215.

    Google Scholar 

  • Panza, G. F., Alvarez, L., Aoudia, A., Ayadi, A., Benhallou, H., Benouar, D., et al. (2002). Realistic modeling of seismic input for megacities and large urban areas (the unesco/iugs/igcp project 414). Episodes, 25, 160–184.

    Google Scholar 

  • Panza, G. F., Mura, C., Peresan, A. (2013). Seismic Hazard and Strong Ground Motion: an Operational Neo-deterministic Approach from National to Local Scale. In UNESCO-EOLSS Joint Commitee (Eds.), Encyclopedia of life support systems (EOLSS)—Geophysics and geochemistry. Oxford: Eolss Publishers.

    Google Scholar 

  • Panza, G. F., Mura, C., Peresan, A., Romanelli, F., & Vaccari, F. (2012). Seismic hazard scenarios as preventive tools for a disaster resilient society. In R. Dmowska (Ed.), Advances in geophysics (Vol. 53, pp. 93–165). San Diego: Academic Press.

    Google Scholar 

  • Panza, G. F., Romanelli, F., & Vaccari, F. (2001). Seismic wave propagation in laterally heterogeneous anelastic media: theory and applications to seismic zonation. In R. Dmowska & B. Saltzman (Eds.), Advances in geophysics (Vol. 43, pp. 1–95). San Diego: Academic Press.

    Google Scholar 

  • Panza, G. F., Romanelli, F., & Yanovskaya, T. B. (2000). Synthetic tsunami mareograms for realistic oceanic models. Geophysical Journal International, 141, 498–508.

    Article  Google Scholar 

  • Panza, G. F., Vaccari, F., Costa, G., Suhadolc, P., & Fah, D. (1996). Seismic input modelling for zoning and microzoning. Earthquake Spectra, 12, 529–566.

    Article  Google Scholar 

  • Panza, G. F., Vaccari, F., & Romanelli, F. (1999). IGCP project 414: Realistic modeling of seismic input for megacities and large urban areas. Episodes, 22, 26–32.

    Google Scholar 

  • Parvez, I. A., Romanelli, F., & Panza, G. F. (2011). Long period ground motion at bedrock level in Delhi city from Himalayan earthquake scenarios. Pure and Applied Geophysics, 168, 409–477.

    Article  Google Scholar 

  • Parvez, I. A., Vaccari, F., & Panza, G. F. (2003). A deterministic seismic hazard map of India and adjacent areas. Geophysical Journal International, 155, 489–508.

    Article  Google Scholar 

  • Patel, V., Dholakia, M., & Singh, A. (2013). Tsunami risk 3D visualizations of Okha Coast, Gujarat (India). International Journal of Engineering Science and Innovative Technology (IJESIT), 2, 130–138.

    Google Scholar 

  • Rao, B. R., & Rao, P. S. (1984). Historical seismicity of peninsular India. Bulletin of the Seismological Society of America, 74(6), 2519–2533.

    Google Scholar 

  • Rastogi, B., & Jaiswal, R. (2006). A catalog of tsunamis in the Indian Ocean. Science of Tsunami Hazards, 25(3), 128–143.

    Google Scholar 

  • Shanker, R. (2001). Seismotectonics of Kutch Rift basin and its bearing on the Himalayan seismicity. ISET Journal of Earthquake Technology, 38(2–4), 59–65.

    Google Scholar 

  • Singh, A., Bhonde, U., Rastogi, B., & Jaiswal, R. (2008). Possible inundation map of coastal areas of Gujarat with a tsunamigenic earthquake. Indian Minerals, 61(3–4), 59–64.

    Google Scholar 

  • Tandon, A., Chaudhury, H. (1968). Koyna earthquake of December, 1967. Technical report 59, India Meteorological Department.

    Google Scholar 

  • Tewari, H., Rao, G. S. P., & Prasad, B. R. (2009). Uplifted crust in parts of western India. Journal of the Geological Society of India, 73(4), 479–488.

    Article  Google Scholar 

  • Ward, S. N. (2011). Tsunami. In Encyclopedia of Solid Earth Geophysics (pp. 1473–1493). Berlin: Springer.

    Google Scholar 

  • Ward, S., & Day, S. (2008). Tsunami balls: A granular approach to tsunami runup and inundation. Communications in Computational Physics, 3(1), 222–249.

    Google Scholar 

  • Wyss, M., Nekrasova, A., & Kossobokov, V. (2012). Errors in expected human losses due to incorrect seismic hazard estimates. Natural Hazards, 62, 927–935.

    Article  Google Scholar 

  • Zuccolo, E., Vaccari, F., Peresan, A., & Panza, G. F. (2011). Neo-deterministic and probabilistic seismic hazard assessments: A comparison over the Italian territory. Pure and Applied Geophysics, 168(1), 69–83.

    Article  Google Scholar 

Download references

Acknowledgements

The results shown in this work have been obtained within the project “Definition of seismic hazard scenarios and microzoning by means of Indo-European e-infrastructures” funded by Regione autonoma Friuli Venezia Giulia in the framework of the interventions aimed at promoting, at regional and local level, the cooperation activities for development and international partnership (Progetti Quadro, L.R. 19/2000). For the tsunami computations, the work has been supported by the RITMARE Flagship Project funded by Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peresan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magrin, A. et al. (2016). Neo-deterministic Definition of Seismic and Tsunami Hazard Scenarios for the Territory of Gujarat (India). In: D'Amico, S. (eds) Earthquakes and Their Impact on Society. Springer Natural Hazards. Springer, Cham. https://doi.org/10.1007/978-3-319-21753-6_7

Download citation

Publish with us

Policies and ethics