Skip to main content

Practicality of Monitoring Crustal Deformation Processes in Subduction Zones by Seafloor and Inland Networks of Seismological Observations

  • Chapter
  • First Online:
Earthquakes and Their Impact on Society

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

  • 1507 Accesses

Abstract

The seismic gap off Tokai (Ishibashi 1981) is well known, and the last Tokai earthquake (M8.4) occurred there in 1854. This Tokai seismic gap has had a large social impact on seismologists worldwide and also the general public in Japan, and many researchers have investigated the risk occurrence of another earthquake from seismological and geological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariyoshi, K., Kato, N., & Hasegawa, A. (2001). Numerical simulation study on recent changes in crustal deformation and seismicity in the Tokai area, central Japan. Journal of Geography, 110, 557–565 (in Japanese with English abstract and captions).

    Article  Google Scholar 

  • Ariyoshi, K., Kato, N., & Hasegawa, A. (2003). Numerical simulation study on recent changes in crustal deformation and seismicity in the Tokai Area, Central Japan II, International Union of Geodesy and Geophysics, XXIII General Assembly (Sapporo, Japan), SS02.

    Google Scholar 

  • Ariyoshi, K., Matsuzawa, T., Hino, R., & Hasegawa, A. (2007). Triggered non-similar slip events on repeating earthquake asperities: Results from 3D numerical simulations based on a friction law. Geophysical Research Letters, 34. doi:10.1029/2006GL028323.

  • Ariyoshi, K., Hori, T., Ampuero, J. P., Kaneda, Y., Matsuzawa, T., Hino, R., & Hasegawa, A. (2009). Influence of interaction between small asperities on various types of slow earthquakes in a 3-D simulation for a subduction plate boundary. Gondwana Research, 16(3–4), 534–544. doi:10.1016/j.gr.2009.03.006.

    Google Scholar 

  • Ariyoshi, K., Matsuzawa, T., Ampuero, J. P., Nakata, R., Hori, T., Kaneda, Y., & Hasegawa, A. (2012). Migration process of very low-frequency events based on a chain-reaction model and its application to the detection of preseismic slip for megathrust earthquakes. Earth Planets Space, 64(8), 693–702. doi:10.5047/eps.2010.09.003.

    Google Scholar 

  • Ariyoshi, K., Nakata, R., Matsuzawa, T., Hino, R., Hori, T., Hasegawa, A., & Kaneda, Y. (2014). The detectability of shallow slow earthquakes by the Dense Oceanfloor network system for earthquakes and Tsunamis (DONET) in Tonankai district, Japan. Marine Geophysical Research, 35(3), 295–310. doi:10.1007/s11001-013-9192-6.

    Google Scholar 

  • Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4(3), 1027. doi:10.1029/2001GC000252.

  • Central Disaster Management Council. (2001). Report of the specialized investigation committee about Tokai earthquake (in Japanese). http://www.bousai.go.jp/kaigirep/chuobou/20011218/pdf/siryou2-1.pdf, (2014-01-25).

  • Coffin, M. F., Gahagan, L. M., & Lawver, L. A. (1998). Present-day plate boundary digital data compilation. University of Texas Institute for Geophysics Technical Report, 174, 5.

    Google Scholar 

  • Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations, Journal of Geophysical Research, 84, 2161–2168.

    Article  Google Scholar 

  • Hasegawa, A., Yoshida, K., & Okada, T. (2011). Nearly complete stress drop in the 2011 Mw9.0 off the pacific coast of Tohoku Earthquake. Earth Planets Space, 63(7), 703–707. doi:10.5047/eps.2011.06.007.

    Article  Google Scholar 

  • Hori, T. (2006). Mechanisms of separation of rupture area and variation in time interval and size of great earthquakes along the Nankai Trough, southwest Japan. Journal of Earth Simulator, 5, 8–19.

    Google Scholar 

  • Ikari, M. J., & Saffer, D. M. (2012). Permeability contrasts between sheared and normally consolidated sediments in the Nankai accretionary prism. Marine Geology, 295–298, 1–13. doi:10.1016/j.margeo.2011.11.006.

    Article  Google Scholar 

  • Inazu, D., & Hino, R. (2011). Temperature correction and usefulness of ocean bottom pressure data from cabled seafloor observatories around Japan for analyses of tsunamis, ocean tides, and low-frequency geophysical phenomena. Earth, Planets and Space, 63, 1133–1149. doi:10.5047/eps.2011.07.014.

    Article  Google Scholar 

  • Ishibashi, K. (1981). Specification of a soon-to-occur seismic faulting in the Tokai district, central Japan, based upon seismotectonics. In D. W. Simpson & P. G. Richards (Eds.), Earthquake prediction: An international review (pp. 297–332). Washington, D. C: American Geophysical Union.

    Google Scholar 

  • Ito, T., Yoshioka, S., & Miyazaki, S. (1999). Interplate coupling in southwest Japan deduced from inversion analysis of GPS data. Physics of the Earth and Planetary Interiors, 115, 17–34.

    Article  Google Scholar 

  • Ito, Y., & Obara, K. (2006). Dynamic deformation of the accretionary prism excites very low frequency earthquakes. Geophysical Research Letters, 33, L02311. doi:10.1029/2005GL025270.

    Google Scholar 

  • Ito, Y., Obara, K., Shiomi, K., Sekinie, S., & Hirose, H. (2007). Slow earthquakes coincident with episodic tremors and slow slip events. Science, 315, 503–506. doi:10.1126/science.1134454.

    Google Scholar 

  • Kato, N., & Hirasawa, T. (1999). A model for possible crustal deformation prior to a coming large interplate earthquake in the Tokai distinct. Central Japan, Bulletin of the Seismological Society of America, 89, 1401–1417.

    Google Scholar 

  • Kikuchi, M., Nakamura, M., & Yoshikawa, K. (2003). Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms. Earth Planets Space, 55, 159–172.

    Article  Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., et al. (2005). The great Sumatra-Andaman earthquake of 26 December 2004. Science, 308, 1127–1133. doi:10.1126/science.1112250.

    Article  Google Scholar 

  • Matsumura, N. (1997). Focal zone of a future Tokai earthquake inferred from the seismicity pattern around the plate interface. Tectonophysics, 273, 271–291.

    Article  Google Scholar 

  • Miyazaki, S., & Heki, K. (2001). Crustal velocity field of southwest Japan: Subduction and arc-arc collision. Journal of Geophysical Research, 106, 4305–4326. doi:10.1029/2000JB900312.

    Article  Google Scholar 

  • Nakanishi, A., Kodaira, S., Miura, S., Ito, A., Sato, T., Park, J. O., et al. (2008). Detailed structural image around splay-fault branching in the Nankai subduction seismogenic zone: Results from a high-density ocean bottom seismic survey. Journal of Geophysical Research, 113, B03105.

    Article  Google Scholar 

  • Nakano, M., Nakamura, T., Kamiya, S., Ohori, M., & Kaneda, Y. (2013a). Intensive seismic activity around the Nankai trough revealed by DONET ocean-floor seismic observations. Earth, Planets and Space, 65(1), 5–15. doi:10.5047/eps.2012.05.013.

    Article  Google Scholar 

  • Nakano, M., Nakamura, T., Kamiya, S., & Kaneda, Y. (2013b). Seismic activity beneath the Nankai trough revealed by DONET ocean-bottom observations. Marine Geophysical Research, 35(3), 271–284. doi:10.1007/s11001-013-9195-3.

    Google Scholar 

  • Noguchi, S. (1996). Geometry of the Philippine Sea Slab and the convergent tectonics in the Tokai District, Japan. Journal of the Seismoogical Society of Japan, 49, 295–325 (in Japanese with English abstract and figure captions).

    Google Scholar 

  • Obara, K. (2010). Phenomenology of deep slow earthquake family in southwest Japan: Spatiotemporal characteristics and segmentation. Journal of Geophysical Research, 115, B00A25. doi:10.1029/2008JB006048.

  • Obara, K., & Sekine, S. (2009). Characteristic activity and migration of episodic tremor and slow-slip events in central Japan. Earth Planets Space, 61, 853–862.

    Article  Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a halfspace. Bulletin of the Seismogical Society of America, 82, 1018–1040.

    Google Scholar 

  • Ozawa, S., Murakami, M., Kaidzu, M., Tada, T., Sagiya, T., Hatanaka, Y., et al. (2002). Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan. Science, 298, 1009–1012.

    Article  Google Scholar 

  • Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475, 373–376. doi:10.1038/nature10227.

    Article  Google Scholar 

  • Polster, A., Fabian, M., & Villinger, H. (2009). Effective resolution and drift of Paroscientific pressure sensors derived from long-term seafloor measurements. Geochemistry, Geophysics, Geosystems, 10, Q08008. doi:10.1029/2009GC002532.

    Article  Google Scholar 

  • Rice, J. R. (1993). Spatio-temporal complexity of slip on a fault. Journal of Geophyical Research, 98, 9885–9907.

    Article  Google Scholar 

  • Rubin, A. M., & Ampuero, J. P. (2005). Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research, 110, B11312. doi:10.1029/2005JB003686.

    Article  Google Scholar 

  • Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research, 88, 10359–10370.

    Article  Google Scholar 

  • Sagiya, T. (1999). Interplate coupling in the Tokai district, central Japan, deduced from continuous GPS data. Geophysical Research Letters, 26, 2315–2318.

    Article  Google Scholar 

  • Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research, 88, 4984–4996.

    Article  Google Scholar 

  • Segall, P. (2010). Earthquake and volcano deformation. Oxford: Princeton University Press.

    Book  Google Scholar 

  • Sella, G. F., Dixon, T. H., & Mao, A. (2002) REVEL: A model for recent plate velocities from space geodesy. Journal of Geophysical Research, 107(B4 ETG11), 1–30. doi:10.1029/2000JB000033.

    Google Scholar 

  • Sugioka, H., Okamoto, T., Nakamura, T., Ishihara, Y., Ito, A., Obana, K., et al. (2012). Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nature Geoscience, 5, 414–418. doi:10.1038/NGEO1466.

    Article  Google Scholar 

  • Takagi, A. (1980). Concluding remarks and precursory seismic activity of the 1978 Miyagi-Oki Earthquake. In Proceedings of Earthquake Prediction Research Symposium, Seismological Society of Japan and Subcommittee of Earthquake Prediction, National Committee of Geophysics, Science Council of Japan, 231–241 (in Japanese with English abstract and figure captions).

    Google Scholar 

  • Tamura, Y., Sato, T., Ooe, M., & Ishiguro, M. (1991). A procedure for tidal analysis with a Bayesian information criterion. Geophysical Journal International, 104, 507–516.

    Article  Google Scholar 

  • The Headquarters for Earthquake Research Promotion. (2013). Evaluations of occurrence potentials or subduction-zone earthquakes to date (written in Japanese). http://www.jishin.go.jp/main/p_hyoka02_kaiko.htm.

  • Wessel, P., & Smith, W. H. F. (1998). New, improved version of the generic mapping tools released. EOS Transactions, AGU, 79, 579.

    Article  Google Scholar 

  • Yoshioka, S., Yabuki, T., Sagiya, T., Tada, T., & Matsu’ura, M. (1993). Interplate coupling and relative plate motion in the Tokai district, central Japan, deduced from geodetic data inversion using ABIC. Geophysical Journal International, 113, 607–621.

    Article  Google Scholar 

Download references

Acknowledgements

Some figures were drawn using GTOPO30 (available from the U.S. Geological Survey) and GMT software (Wessel and Smith 1998). Hydraulic pressure data shown in Fig. 13 and their map in Fig. 14 were obtained by the DONET program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Publication of this chapter was partly supported by MEXT for Young Scientists (B), 23710212, 2013, Grant-in-Aid for Scientific Research (B), 15H04228, 2015, and by the Geodynamics program. The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Ariyoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ariyoshi, K., Kaneda, Y. (2016). Practicality of Monitoring Crustal Deformation Processes in Subduction Zones by Seafloor and Inland Networks of Seismological Observations. In: D'Amico, S. (eds) Earthquakes and Their Impact on Society. Springer Natural Hazards. Springer, Cham. https://doi.org/10.1007/978-3-319-21753-6_6

Download citation

Publish with us

Policies and ethics