Skip to main content

Finite Element Modelling for Seismic Assessment of Historic Masonry Buildings

  • Chapter
  • First Online:
Earthquakes and Their Impact on Society

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

The chapter discusses on the use of the finite element modelling technique for the seismic assessment of historic masonry buildings, outlining that advanced numerical analyses can provide significant information to understand their actual structural behaviour. A finite element methodology for the static and dynamic nonlinear analysis of historic masonry structures is described and exemplified through the discussion of two representative case studies: a masonry church and an old residential building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, J. M., Brencich, A., Hughes, T., & Jefferson, T. (2010). Micromodelling of eccentrically loaded brickwork: Study of masonry wallettes. Engineering Structures, 32(5), 1244–1251.

    Article  Google Scholar 

  • Adam, J. M., Ivorra, S., Pallarés, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel caging. Finite element modelling. Construction and Building Materials, 23(6), 2265–2276.

    Article  Google Scholar 

  • ANSYS Inc. (1998). ANSYS manual. USA: Southpoint.

    Google Scholar 

  • Antoniou, S., & Pinho, R. (2004). Advantages and limitations of adaptive and non adaptive force-based pushover procedures. Journal of Earthquake Engineering, 8(4), 497–522.

    Google Scholar 

  • Bartoli, G., & Betti, M. (2013). Cappella dei Principi in Firenze, Italy: Experimental analyses and numerical modeling for the investigation of a local failure. ASCE’s Journal of Performance of Constructed Facilities, 27(1), 4–26.

    Article  Google Scholar 

  • Berto, L., Saetta, A., Scotta, R., & Vitaliani, R. (2005). Failure mechanism prism loaded in axial compression: Computational aspects. Materials and Structures, 38, 249–256.

    Article  Google Scholar 

  • Betti, M., Bartoli, G., & Orlando, M. (2010). Evaluation study on structural fault of a Renaissance Italian Palace. Engineering Structures, 32(7), 1801–1813.

    Article  Google Scholar 

  • Betti, M., & Vignoli, A. (2008). Modelling and analysis of a Romanesque church under earthquake loading: Assessment of seismic resistance. Engineering Structures, 30(2), 352–367.

    Article  Google Scholar 

  • Binda, L., Saisi, A., & Tiraboschi, C. (2000). Investigation procedures for the diagnosis of historic masonries. Construction and Building Materials, 14, 199–233.

    Article  Google Scholar 

  • Borri, A., Corradi, M., & Vignoli, A. (2000). Il comportamento strutturale della muratura nelle zone terremotate dell’Umbria: alcune sperimentazioni. Ingegneria Sismica, XVII(3), 23–33. (in Italian).

    Google Scholar 

  • Bowitz, E., & Ibenholt, K. (2009). Economic impacts of cultural heritage—Research and perspectives. Journal of Cultural Heritage, 10(1), 1–8.

    Article  Google Scholar 

  • Brandonisio, G., Lucibello, G., Mele, E., & De Luca, A. (2013). Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake. Engineering Failure Analysis, 34, 693–714.

    Article  Google Scholar 

  • Carpinteri, A., Invernizzi, S., & Lacidogna, G. (2005). In situ damage assessment and nonlinear modelling of a historical masonry tower. Engineering Structures, 27, 387–395.

    Article  Google Scholar 

  • Ceci, A. M., Contento, A., Fanale, L., Galeota, D., Gattulli, V., Lepidi, M., & Potenza, F. (2013). Structural performance of the historic and modern buildings of the University of L’Aquila during the seismic events of April 2009. Engineering Structures, 32(7), 1899–1924.

    Article  Google Scholar 

  • Cerioni, R., Brighenti, R., & Donida, G. (1995). Use of incompatible displacement modes in a finite element model to analyze the dynamic behavior of unreinforced masonry panels. Computers & Structures, 57(1), 47–57.

    Article  Google Scholar 

  • Chiostrini, S., Galano, L., & Vignoli, A. (1998). In situ tests and numerical simulations on structural behaviour of ancient masonry. In Proceedings of Monument-98, Workshop on Seismic Performance of Monuments, Lisbon.

    Google Scholar 

  • Chiostrini, S., Galano, L., & Vignoli, A. (2000). On the determination of strength of ancient masonry walls via experimental tests. In Proceedings of 12 WCEE, Auckland, New Zealand, January 30–February 4, 2000.

    Google Scholar 

  • Chiostrini, S., Galano, L., & Vignoli, A. (2003). In situ shear and compression tests in ancient stone masonry walls of Tuscany, Italy. ASTM Journal of Testing and Evaluation, 31(4), 289–304.

    Google Scholar 

  • Chiostrini, S., & Vignoli, A. (1992). An experimental research program on the behavior of stone masonry structures. ASTM Journal of Testing and Evaluation, 20(3), 190–206.

    Article  Google Scholar 

  • Chiostrini, S., & Vignoli, A. (1994). In-situ determination of the strength properties of masonry walls by destructive shear and compression tests. Masonry International, 7(3), 87–96.

    Google Scholar 

  • Chopra, A. K., & Goel, R. K. (2004). A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings. Earthquake Engineering and Structural Dynamics, 33, 903–927.

    Article  Google Scholar 

  • Corradi, M., Borri, A., & Vignoli, A. (2002a). Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997–1998. Construction and Building Materials, 16(4), 229–239.

    Article  Google Scholar 

  • Corradi, M., Borri, A., & Vignoli, A. (2002b). Experimental study on the determination of strength of masonry walls. Construction and Building Materials, 17(5), 325–337.

    Article  Google Scholar 

  • Da Porto, F., Guidi, G., Garbin, E., & Modena, C. (2010). In-plane behavior of clay masonry walls: Experimental testing and finite-element modeling. Journal of Structural Engineering, 136(11), 1379–1392.

    Article  Google Scholar 

  • Del Coz Díaz, J. J., García Nieto, P. J., Martínez-Luengas, A. L., & Álvarez Rabanal, F. P. (2007). Evaluation of the damage in the vault and portico of the pre-Romanesque chapel of San Salvador de Valdediós using frictional contacts and the finite-element method. International Journal of Computer Mathematics, 84(3), 377–393.

    Article  Google Scholar 

  • Del Piero, G. (1984). Le costruzioni in muratura. Berlin, Heidelberg: Springer. (in Italian).

    Google Scholar 

  • DM96. (1996). Decreto Ministero dei Lavori Pubblici del 16 Gennaio 1996. Norme tecniche relative ai Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi. G.U. 5/2/1996, No. 29 (in Italian).

    Google Scholar 

  • DPCM. (2011). Direttiva del Presidente del Consiglio dei Ministri per la Valutazione e la riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni di cui al decreto del Ministero delle infrastrutture e dei trasporti del 14 Gennaio 2008, G.U. 26/2/2011, No. 47 (in Italian).

    Google Scholar 

  • Drucker, D., & Prager, W. (1952). Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10(2), 157–165.

    Google Scholar 

  • Eurocode 8 (1996) Design provisions for earthquake resistance of structures. Part 1–4: General rules—Strengthening and repair of buildings. ENV 1998-1-4: 1996. CEN, Brussels.

    Google Scholar 

  • Falasco, A., Lagomarsino, S., & Penna, A. (2006). On the use of pushover analysis for existing masonry buildings. In Proceeding of the First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, September 3–8, 2006.

    Google Scholar 

  • Fioravanti, M., & Mecca, S. (Eds.). (2011). The safeguard of cultural heritage: A challenge from the past for the Europe of tomorrow. Florence: Firenze University Press.

    Google Scholar 

  • Gambarotta, L., & Lagomarsino, S. (1997). Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications. Earthquake Engineering and Structural Dynamics, 26(4), 423–439.

    Article  Google Scholar 

  • Hansen, E., William, K., & Carol, I. (2001). A two-surface anisotropic damage/plasticity model for plain concrete. In Proceedings of Framcos-4 Conference 2001.

    Google Scholar 

  • ICOMOS (International Council on Monuments and Sites). (2001). Recommendations for the analysis, conservation and structural restoration of architectural heritage. International Scientific Committee for Analysis and Restoration of Structures of Architectural Heritage, Paris, 2001.

    Google Scholar 

  • Ivorra, S., Pallares, F. J., & Adam, J. M. (2009). Experimental and numerical results from the seismic study of a masonry bell tower. Advances in Structural Engineering, 12(9), 287–293.

    Article  Google Scholar 

  • Ivorra, S., Pallares, F. J., Adam, J. M., & Tomás, R. (2010). An evaluation of the incidence of soil subsidence on the dynamic behaviour of a Gothic bell tower. Engineering Structures, 32(8), 2318–2325.

    Article  Google Scholar 

  • Kim, S., & D’Amore, E. (1999). Push-over analysis procedures in earthquake engineering. Earthquake Spectra, 15(3), 417–434.

    Article  Google Scholar 

  • Leftheris, B. P., Stavroulaki, M. E., Sapounaki, A. C., & Stavroulakis, G. E. (2006). Computational mechanics for heritage structures. Southampton: WIT Press.

    Google Scholar 

  • Lourenço, P. B. (2005). Assessment, diagnosis and strengthening of Outeiro Church, Portugal. Construction and Building Materials, 19(8), 634–645.

    Article  Google Scholar 

  • Lourenço, P. B., Krakowiak, K. J., Fernandes, F. M., & Ramos, L. F. (2007). Failure analysis of Monastery of Jero´nimos, Lisbon: How to learn from sophisticated numerical models. Engineering Failure Analysis, 14, 280–300.

    Article  Google Scholar 

  • Lourenço, P. B., & Oliveira, D. V. (2007). Improving the seismic resistance of masonry buildings: Concepts for cultural heritage and recent developments in structural analysis. In Atti del XII Convegno Nazionale ANIDIS L’Ingegneria Sismica in Italia, Pisa, 2007.

    Google Scholar 

  • Lourenço, P. B., & Pina-Henriques, J. (2006). Validation of analytical and continuum numerical methods for estimating the compressive strength of masonry. Computers & Structures, 84, 1977–1989.

    Article  Google Scholar 

  • Lucibello, G., Brandonisio, G., Mele, E., & De Luca, A. (2013). Seismic damage and performance of Palazzo Centi after L’Aquila earthquake: A paradigmatic case study of effectiveness of mechanical steel ties. Engineering Failure Analysis, 34, 407–430.

    Article  Google Scholar 

  • NTC. (2008). Decreto Ministero delle Infrastrutture e dei Trasporti 14 Gennaio 2008. Nuove Norme Tecniche per le Costruzioni, G.U. 4/2/2008, No. 29 (In Italian).

    Google Scholar 

  • OPCM. (2003). Ordinanza Presidente del Consiglio dei Ministri 3274/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica. G.U. 8/5/2003, No. 105 (In Italian).

    Google Scholar 

  • Ramos, L. F., & Lourenço, P. B. (2004). Modeling and vulnerability of historical city centers in seismic areas: A case study in Lisbon. Engineering Structures, 26, 1295–1310.

    Article  Google Scholar 

  • Romera, L. E., Hernandez, S., & Reinosa, J. M. (2008a). Numerical characterization of the structural behaviour of the Basilica of Pilar in Zaragoza (Spain). Part 1: Global and local models. Advances in Engineering Software, 39, 301–314.

    Article  Google Scholar 

  • Romera, L. E., Hernandez, S., & Reinosa, J. M. (2008b). Numerical characterization of the structural behaviour of the Basilica of Pilar in Zaragoza (Spain). Part 2: Constructive process effects. Advances in Engineering Software, 39, 315–326.

    Article  Google Scholar 

  • Salari, M. R., Saeb, S., Willam, K. J., Patchet, S. J., & Carrasco, R. C. (2004). A coupled elasto-plastic damage model for geo-materials. Computer Methods in Applied Mechanics and Engineering, 193(27–29), 2625–2643.

    Article  Google Scholar 

  • Siviero, E., Barbieri, A., & Foraboschi, P. (1997). Lettura strutturale delle costruzioni. Milano: Città Studi Edizioni. (in Italian).

    Google Scholar 

  • Taliercio, A., & Binda, L. (2008). The Basilica of San Vitale in Ravenna: Investigation on the current structural faults and their mid-term evolution. Journal of Cultural Heritage, 8, 99–118.

    Article  Google Scholar 

  • Theodossopoulos, D., & Sinha, B. (2013). A review of analytical methods in the current design processes and assessment of performance of masonry structures. Construction and Building Materials, 41, 990–1001.

    Article  Google Scholar 

  • William, K. J., & Warnke, E. D. (1975). Constitutive model for the triaxial behaviour of concrete. In Proceeding of the International Association for Bridge and Structural Engineering, Bergamo, Italy, 1975.

    Google Scholar 

  • Zucchini, A., & Lourenco, P. (2007). Mechanics of masonry in compression: Results from a homogenisation approach. Computers & Structures, 85(3–4), 193–204.

    Article  Google Scholar 

  • Zucchini, A., & Lourenço, P. B. (2002). A micro-mechanical model for the homogenisation of masonry. International Journal of Solids and Structures, 39, 3233–3255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Betti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Betti, M., Galano, L., Vignoli, A. (2016). Finite Element Modelling for Seismic Assessment of Historic Masonry Buildings. In: D'Amico, S. (eds) Earthquakes and Their Impact on Society. Springer Natural Hazards. Springer, Cham. https://doi.org/10.1007/978-3-319-21753-6_14

Download citation

Publish with us

Policies and ethics