Skip to main content

Towards a Universal Approach for the Finite Departure Problem in Overlay Networks

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9212))

Included in the following conference series:

Abstract

A fundamental problem for overlay networks is to safely exclude leaving nodes, i.e., the nodes requesting to leave the overlay network are excluded from it without affecting its connectivity. There are a number of studies for safe node exclusion if the overlay is in a well-defined state, but almost no formal results are known for the case in which the overlay network is in an arbitrary initial state, i.e., when looking for a self-stabilizing solution for excluding leaving nodes. We study this problem in two variants: the Finite Departure Problem (\(\mathcal {FDP}\)) and the Finite Sleep Problem (\(\mathcal {FSP}\)). In the \(\mathcal {FDP}\) the leaving nodes have to irrevocably decide when it is safe to leave the network, whereas in the \(\mathcal {FSP}\), this leaving decision does not have to be final: the nodes may resume computation when woken up by an incoming message. We are the first to present a self-stabilizing protocol for the \(\mathcal {FDP}\) and the \(\mathcal {FSP}\) that can be combined with a large class of overlay maintenance protocols so that these are then guaranteed to safely exclude leaving nodes from the system from any initial state while operating as specified for the staying nodes. In order to formally define the properties these overlay maintenance protocols have to satisfy, we identify four basic primitives for manipulating edges in an overlay network that might be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, K., Kuhn, F., Wattenhofer, R.: Dependable Peer-to-Peer Systems Withstanding Dynamic Adversarial Churn. In: Kohlas, J., Meyer, B., Schiper, A. (eds.) Dependable Systems: Software, Computing, Networks. LNCS, vol. 4028, pp. 275–294. Springer, Heidelberg (2006)

    Google Scholar 

  2. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. In: SOSP, pp. 131–145 (2001)

    Google Scholar 

  3. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing Consensus in Mobile Networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 37–50. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Aspnes, J., Shah, G.: Skip graphs. ACM Transactions on Algorithms 3(4), 37 (2007)

    Article  MathSciNet  Google Scholar 

  5. Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data structure for distributed environments. In: SODA, pp. 318–327 (2004)

    Google Scholar 

  6. Awerbuch, B., Scheideler, C.: Towards a scalable and robust dht. Theory Comput. Syst. 45(2), 234–260 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: a dynamic overlay network for routing, data management, and multicasting. In: SPAA, pp. 170–179 (2004)

    Google Scholar 

  9. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)

    Google Scholar 

  10. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Doerr, B., Goldberg, LA., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing consensus with the power of two choices. In: SPAA, pp. 149–158 (2011)

    Google Scholar 

  12. Dolev, D., Hoch, E.N., van Renesse, R.: Self-stabilizing and Byzantine-Tolerant Overlay Network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 343–357. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Dolev, S., Tzachar, N.: Spanders: Distributed spanning expanders. Sci. Comput. Program. 78(5), 544–555 (2013)

    Article  MATH  Google Scholar 

  14. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Foreback, D., Koutsopoulos, A., Nesterenko, M., Scheideler, C., Strothmann, T.: On Stabilizing Departures in Overlay Networks. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 48–62. Springer, Heidelberg (2014)

    Google Scholar 

  16. Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Time Complexity of Distributed Topological Self-stabilization: The Case of Graph Linearization. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 294–305. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A scalable overlay network with practical locality properties. In: USENIX Symposium on Internet Technologies and Systems ((2003)

    Google Scholar 

  18. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure for low stretch under adversarial attack. Distributed Computing 25(4), 261–278 (2012)

    Article  MATH  Google Scholar 

  19. Herault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief Announcement: Self-stabilizing Spanning Tree Algorithm for Large Scale Systems. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 574–575. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131–140 (2009)

    Google Scholar 

  21. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional topological self-stabilization: A distributed algorithm for delaunay graphs. Theor. Comput. Sci. 457, 137–148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord overlay network. In: SPAA, pp. 235–244 (2011)

    Google Scholar 

  23. Kuhn, F., Schmid, S., Wattenhofer, R.: Towards worst-case churn resistant peer-to-peer systems. Distributed Computing 22(4), 249–267 (2010)

    Article  MATH  Google Scholar 

  24. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of the butterfly. In: PODC, pp. 183–192 (2002)

    Google Scholar 

  25. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: A Stabilizing Deterministic Message-Passing Skip List. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 356–370. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Saia, J., Trehan, A.: Picking up the pieces: Self-healing in reconfigurable networks. In: IPDPS, pp. 1–12 (2008)

    Google Scholar 

  27. Scheideler, C.: How to spread adversarial nodes?: rotate! In: STOC, pp. 704–713 (2005)

    Google Scholar 

  28. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Frans Kaashoek, M., Dabek, F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thim Strothmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Koutsopoulos, A., Scheideler, C., Strothmann, T. (2015). Towards a Universal Approach for the Finite Departure Problem in Overlay Networks . In: Pelc, A., Schwarzmann, A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2015. Lecture Notes in Computer Science(), vol 9212. Springer, Cham. https://doi.org/10.1007/978-3-319-21741-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21741-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21740-6

  • Online ISBN: 978-3-319-21741-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics