Skip to main content

Constructing Self-stabilizing Oscillators in Population Protocols

  • Conference paper
  • First Online:
Book cover Stabilization, Safety, and Security of Distributed Systems (SSS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9212))

Included in the following conference series:

Abstract

Population protocols (PPs) are a model of passive distributed systems in which a collection of finite-state mobile agents interact with each other to accomplish a common task. Unlike other works, which investigate their computation power, this paper throws light on an aspect of PPs as a model of chemical reactions. Motivated by the well-known BZ reaction that provides an autonomous chemical oscillator, we address the problem of autonomously generating an oscillatory execution from any initial configuration (i.e., in a self-stabilizing manner). For deterministic PPs, we show that the self-stabilizing leader election (SS-LE) and the self-stabilizing oscillator problem (SS-OSC) are equivalent, in the sense that an SS-OSC protocol is constructible from a given SS-LE protocol and vice versa, which unfortunately implies that (1) resorting to a leader is inevitable (although we seek a decentralized solution) and (2) n states are necessary to create an oscillation of amplitude n, where n is the number of agents (although we seek a memory-efficient solution). Aiming at reducing the space complexity, we present and analyze some randomized oscillatory PPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: PODC, pp. 290–299 (2004)

    Google Scholar 

  3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distributed Computing 21(3), 183–199 (2008)

    Article  MATH  Google Scholar 

  4. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. TAAS 3(4) (2008)

    Google Scholar 

  5. Beauquier, J., Burman, J.: Self-stabilizing synchronization in mobile sensor networks with covering. In: Rajaraman, R., Moscibroda, T., Dunkels, A., Scaglione, A. (eds.) DCOSS 2010. LNCS, vol. 6131, pp. 362–378. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Beauquier, J., Burman, J.: Self-stabilizing mutual exclusion and group mutual exclusion for population protocols with covering. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 235–250. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: On space complexity of self-stabilizing leader election on a population protocol model. Theory Comput. Syst. 50(3), 433–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kinpara, K., Izumi, T., Izumi, T., Wada, K.: Improving space complexity of self-stabilizing counting on mobile sensor networks. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 504–515. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: A new paradigm for artifacts. New Generation Computing 31(1), 27–45 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anissa Lamani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cooper, C., Lamani, A., Viglietta, G., Yamashita, M., Yamauchi, Y. (2015). Constructing Self-stabilizing Oscillators in Population Protocols. In: Pelc, A., Schwarzmann, A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2015. Lecture Notes in Computer Science(), vol 9212. Springer, Cham. https://doi.org/10.1007/978-3-319-21741-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21741-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21740-6

  • Online ISBN: 978-3-319-21741-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics