Skip to main content

Raman Pulse Generation

  • Chapter
  • First Online:
  • 898 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

To induce coherent stimulated Raman transitions (see Chap. 2) in our atom cloud we require two mutually phase-coherent ‘Raman beams’ which are spatially separable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The manufacturer specifies a maximum output power of 1 W, however the highest achieved with this particular device is \(\sim \) \(350\) mW.

  2. 2.

    Generating a collimated flat-top beam using beam-shaping optics is difficult and not considered here.

  3. 3.

    Note that here \(l_{1,2}\) indicate the side lengths of the two different square-profile beams, and in Fig. 4.13 \(l_{x,y}\) indicate the side lengths of a single beam in the x and y directions, where \(l_x\simeq l_y\).

References

  1. J. Appel, A. MacRae, A.I. Lvovsky, A versatile digital GHz phase lock for external cavity diode lasers. Measur. Sci. Tech. 20(5), 055302+ (2009)

    Google Scholar 

  2. J. Reichel, O. Morice, G.M. Tino, C. Salomon, Subrecoil Raman cooling of cesium atoms. Europhys. Lett. 28(7), 477–482 (1994)

    Article  ADS  Google Scholar 

  3. M. Kasevich, S. Chu, Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69(12), 1741–1744 (1992)

    Google Scholar 

  4. M. Kasevich, S. Chu, Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67(2), 181–184 (1991)

    Google Scholar 

  5. J. Bateman, Novel schemes for the optical manipulation of atoms and molecules. Ph.D. thesis, School of Physics and Astronomy, University of Southampton, 2009, http://phyweb.phys.soton.ac.uk/quantum/articles.php

  6. G.C. Tarr, Single-sideband frequency modulation. Electron. Power 11(8), 286+ (1965)

    Google Scholar 

  7. N. Cooper, J. Bateman, A. Dunning, T. Freegarde, Actively stabilized wavelength-insensitive carrier elimination from an electro-optically modulated laser beam. J. Opt. Soc. Am. B 29(4), 646–649 (2012)

    Google Scholar 

  8. T.W. Hansch, B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35(3), 441–444 (1980)

    Article  ADS  Google Scholar 

  9. J.E. Bateman, R.L.D. Murray, M. Himsworth, H. Ohadi, A. Xuereb, T. Freegarde, Hänsch-Couillaud locking of Mach-Zehnder interferometer for carrier removal from a phase-modulated optical spectrum. J. Opt. Soc. Am. B 27(8), 1530–1533 (2010)

    Article  ADS  Google Scholar 

  10. N. Cooper, J. Woods, J. Bateman, A. Dunning, T. Freegarde, Stabilized fiber-optic MachZehnder interferometer for carrier-frequency rejection. Appl. Opt. 52(23), 5713–5717 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Dunning .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dunning, A.J. (2015). Raman Pulse Generation. In: Coherent Atomic Manipulation and Cooling. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-21738-3_4

Download citation

Publish with us

Policies and ethics