Skip to main content

Continuous State Branching Processes

  • Chapter
  • 1288 Accesses

Part of the book series: Mathematical Biosciences Institute Lecture Series ((STOCHBS,volume 1.4))

Abstract

In this part, we consider a new class of stochastic differential equations for monotype populations, taking into account exceptional events where an individual has a large number of offspring. We generalize the Feller equation (3.12) obtained in Subsection 3.2 by adding jumps whose rates are proportional to the population size. The jumps are driven by a Poisson point measure, as already done in Subsection 2.4 This class of processes satisfies the branching property: the individuals of the underlying population evolve independently. Combining this property with the tools developed in the first part, we describe finely the processes, their long time behavior, and the scaling limits they come from.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Bertoin and J.-F. Le Gall. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields, 117(2):249–266, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. E. Caballero, J. L. Perez Garmendia and G. Uribe Bravo. A Lamperti type representation of Continuous-State Branching Processes with Immigration Annals of Probability, 41, 3A, 1585–1627. 2013.

    Google Scholar 

  3. M. E. Caballero, A. Lambert and G. Uribe Bravo. Proof(s) of the Lamperti representation of continuous-state branching processes Probab. Surveys 6 62–89, 2009.

    Google Scholar 

  4. T. Duquesne and J.-F. LeGall. Random Trees, Lévy Processes and Spatial Branching Processes. Monograph available via http://arxiv.org/abs/math/0509558.

  5. S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence. Wiley, 1986.

    Google Scholar 

  6. Z. Fu and Z. Li. Stochastic equations of non-negative processes with jumps. Stoch. Proc. Appl., 120(3):306–330, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. R. Grey. Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probability, 11:669–677, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Grimvall. On the convergence of sequences of branching processes. Ann. Probability, 2:1027–1045, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Lamperti. Continuous state branching processes. Bull. Amer. Math. Soc., 73, 382–386, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Lamperti. The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 7:271–288, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. L. Silverstein. A new approach to local times. J. Math. Mech., 17:1023–1054, 1967/1968.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bansaye, V., Méléard, S. (2015). Continuous State Branching Processes. In: Stochastic Models for Structured Populations. Mathematical Biosciences Institute Lecture Series(), vol 1.4. Springer, Cham. https://doi.org/10.1007/978-3-319-21711-6_4

Download citation

Publish with us

Policies and ethics