Skip to main content

Corneal Limbal Stem Cell Niche

  • Chapter
  • First Online:
Tissue-Specific Stem Cell Niche

Abstract

The cornea is not only essential for passing the light into the eye but also is responsible for more than two-thirds of the eye’s total refractive power. Corneal integrity and transparency is highly dependent on a healthy layer of continuously renewing stratified squamous epithelium located on its outer surface. The corneal epithelial stem/progenitor cells that replenish the corneal epithelium are located in a 1.5–2 mm wide area in between the cornea and sclera, known as the corneal scleral junction, or limbus. This stem cell niche has unique features that are critical to the function of the “limbal” stem cells. Understanding the biology of limbal stem cells has led to significant advancements in the treatment of patients with limbal stem cell deficiency, a group conditions in which the limbal stem cells and their niche are lost or damaged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LSCD:

Limbal stem cell deficiency

CESCs:

Corneal epithelial stem cells

TA:

Transient amplifying

ECM:

Extracellular matrix

LSCs:

Limbal stem cells

TDCs:

Terminally differentiated cells

TACs:

Transient amplifying cells

PMCs:

Post-mitotic cells

References

  1. Zieske JD. Perpetuation of stem cells in the eye. Eye. 1994;8:163–9.

    Article  PubMed  Google Scholar 

  2. Espandar L, Afshari NA. Adult corneal stem cells and alternative sources for regenerative therapy for the cornea. Ophthalmology. 2013;23(1):1–6.

    Article  Google Scholar 

  3. Davanger M, Evensen A. Role of pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971;229:560–1.

    Article  CAS  PubMed  Google Scholar 

  4. Chang CY, Green CR, McGhee CN, Sherwin T. Acute wound healing in the humancentral corneal epithelium appears to be independent of limbal stem cell influence. Invest Ophthalmol Vis Sci. 2008;49:5279–86.

    Article  PubMed  Google Scholar 

  5. Kim BY, Riaz KM, Bakhtiani P, Chan CC, Welder JD, Holland EJ, et al. Medically reversible limbal stem cell disease. Ophthalmology. 2014;121:2053–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tsai RJ, Tsai RY. From stem cell niche environments to engineering of corneal epithelium tissue. Jpn J Ophthalmol. 2014;58(2):111–9.

    Article  CAS  PubMed  Google Scholar 

  7. Hanna C, O’Brien JE. Cell production and migration in the epithelial layer of the cornea. Arch Ophthalmol. 1960;64:536–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ebato B, Friend J, Thoft RA. Comparison of limbal and peripheral human corneal epithelium in tissue culture. Invest Ophthalmol Vis Sci. 1988;29:1533–7.

    CAS  PubMed  Google Scholar 

  9. Lindberg K, Brown ME, Chaves HV, Kenyan KR, Rheinwald JG. In vitro propagation of human ocular surface epithelial cells for transplantation. Invest Ophthalmol Vis Sci. 1993;34:2672–9.

    CAS  PubMed  Google Scholar 

  10. Schermer A, Galvin S, Sun TT. Differetiation-related expression of a major 64 k corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103:49–62.

    Article  CAS  PubMed  Google Scholar 

  11. Kruse FE, Tseng SC. A tumor promoter-resistant subpopulation of progenitor cells is larger in limbal epithelium than in corneal epithelium. Invest Ophthalmol Vis Sci. 1993;34:2501–11.

    CAS  PubMed  Google Scholar 

  12. Tseng SC. Regulation and clinical implications of corneal epithelial stem cells. Mol Biol Rep. 1996;23:47–58.

    Article  CAS  PubMed  Google Scholar 

  13. Kruse FE, Tseng SC. Retinoic acid regulates clonal growth and differentiation of cultured limbal and peripheral corneal epithelium. Invest Ophthalmol Vis Sci. 1994;35:2405–20.

    CAS  PubMed  Google Scholar 

  14. Kruse FE, Tseng SC. Growth factors modulate clonal growth and differentiation of cultured rabbit limbal and corneal epithelium. Invest Ophthalmol Vis Sci. 1993;34:1963–76.

    CAS  PubMed  Google Scholar 

  15. Cotsarelis G, Cheng SZ, Dong G, Sun TT. and Lavker, R.M . Existence of slow- cycling limbal basal epithelial cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989;57:201–209.

    Google Scholar 

  16. Lavker RM, Sun TT. Epithelial stem cells: the eye provides a vision. Eye. 2003;17:937–40.

    Article  CAS  PubMed  Google Scholar 

  17. Lavker RM, Tseng SC, Sun TT. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res. 2004;78:433–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kurpakus MA, Stock EL, Jones JC. Expression of 55-kD/64-kD corneal keratins in ocular surface epithelium. Invest Ophthalmol Vis Sci. 1990;31:448–56.

    CAS  PubMed  Google Scholar 

  19. Yuspa SH, Ben T, Hennings H, Lichti U. Divergent responses in epidermal basal cells exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1982;42:2344–9.

    CAS  PubMed  Google Scholar 

  20. Nassiri N, Djalilian AR, Chan CC. Ocular limbal stem cell biology and transplantation. Stem Cell Appl Dis. 2008 Nova Science Publishers.

    Google Scholar 

  21. Lemp MA, Mathers WD. Corneal epithelial cell movement in humans. Eye. 1989;3:438–45.

    Article  PubMed  Google Scholar 

  22. Kiritoshi A, SundarRaj N, Thoft RA. Differentiation in cultured limbal epithelium as defined by keratin expression. Invest Ophthalmol Vis Sci. 1991;32:3073–7.

    CAS  PubMed  Google Scholar 

  23. Kurpakus MA, Maniaci MT, Esco M. Expression of keratins K12, K4 and K14 during development of ocular surface epithelium. Curr Eye Res. 1994;13:805–14.

    Article  CAS  PubMed  Google Scholar 

  24. Liu CY, Zhu G, Westerhausen-Larson A, Converse R, Kao CW. Sun TT KaoWW, Cornea-specific expression of K12 keratin during mouse development. Curr Eye Res. 1993;129110:963–74.

    Article  Google Scholar 

  25. Matic M, Petrov IN, Chen S, Wang C, Dimitrijevich SD, Wolosin JM. Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation. 1997;61:251–60.

    Article  CAS  PubMed  Google Scholar 

  26. Majo F, Rochat A, Nicolas M, Jaoudé GA, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008;456:250–4.

    Article  CAS  PubMed  Google Scholar 

  27. Barrandon Y, Green H. Three clonal type of keratinocyte with different capacities for multicaption. Proc Natl Acad Sci USA. 1987;84:2302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barbaro V, Ferrari S, Parekh M, Ponzin D, Parolin C, Di lorio E. Laser scanning confocal microscopy: application in manufacturing and research of corneal stem cells. confocal laser microscopy—Principles and applications in medicine, biology, and the food sciences. 1st edition. Neil Lagali,editor. InTech; 2013.

    Google Scholar 

  29. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, et al. Location and clonal analysis of stem cells and their differentiated progency in the human ocular surface. J Cell Biol. 1999;145:769–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Figueira EC, Girolamo ND, Coroneo MT, Wakefield D. The phenotype of limbal epithelial stem cells. Invest Ophthalmol Vis Sci. 2007;48(1):144–56.

    Article  PubMed  Google Scholar 

  31. Yoon JJ, Ismail S, Sherwin T. Limbal Stem Cells: Central concepts of corneal epithelial homeostasis. World J Stem Cells. 2014;6(4):391–403.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells. 2004;22:355–66.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dexter TM, Spooncer E. Growth and differentiation in the hematopoitic system. Annu Rev Cell Biol. 1989;3:423–41.

    Article  Google Scholar 

  34. Jones PH. Epithelial stem cells. BioEssays. 1997;19:683–90.

    Article  CAS  PubMed  Google Scholar 

  35. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997;88:287–98.

    Article  CAS  PubMed  Google Scholar 

  36. Lehrer MS, Sunn TT, Lavker RM. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci. 1998;111:2867–75.

    CAS  PubMed  Google Scholar 

  37. Ordonez P, Di Girolamon N. Concise review: limbal epithelial stem cells: role of the niche microenvironment. Stem Cells. 2012;30:100–7.

    Article  CAS  PubMed  Google Scholar 

  38. Dua HS, Azuara-Blanco A. Limbal stem cells of the cornea epithelium. Sur Ophthalmol. 2000;44:415–25.

    Article  CAS  Google Scholar 

  39. Lavker RM, Wei ZG, Sun TT. Phorbol ester preferentially stimulates mouse fornical conjunctival and limbal epithelial cells to proliferate in vivo. Invest Ophthalmol Vis Sci. 1998;39:301–7.

    CAS  PubMed  Google Scholar 

  40. Ferraris C, Chevalier G, Favier B, Jahoda CA, Dhouailly D. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development. 2000;127(24):5487–95.

    CAS  PubMed  Google Scholar 

  41. Pearton DJ, Ferraris C, Dhouailly D. Transdifferentiation of corneal epithelium: evidence for a lineage between the segregation of epidermal stem cells and induction of hair follicles during embryogenesis. Int J Dev Biol. 2004;48:197–201.

    Article  CAS  PubMed  Google Scholar 

  42. Blazejewski EA, Schlotzer-schrehardt U, Zenkel M, Bachman B, Chankiewitz E, Jacobi C, Kruse FE. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27:642–52.

    Article  Google Scholar 

  43. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood cells. 1978;4:7–25.

    CAS  PubMed  Google Scholar 

  44. McNairn AJ, Guasch G. Epithelial transition zones: Merging microenvironments, niches, and cellular transformation. Eur J Dermatol. 2011;21:21–8.

    CAS  PubMed  Google Scholar 

  45. Huang M, Wang B, Wan P, Liang X, Wang X, Liu Y, Zhou Q, Wang Z. Roles of limbal microvascular net and limbal stroma in maintenance of limbal epithelial stem cells. Cell Tissue Res 2014.

    Google Scholar 

  46. Polisetty N, Fatima A, Madhira SL, et al. Mesenchymal cells from limbal stroma of human eye. Mol Vis. 2008;14:431–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116:769–78.

    Article  CAS  PubMed  Google Scholar 

  48. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311:1880–5.

    Article  CAS  PubMed  Google Scholar 

  49. Goldberg MF, Bron AJ. Limbal palisades of Vogt. Trans Am Ophthalmol Soc. 1982;80:155-17.

    Google Scholar 

  50. Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol. 2005;89(5):529–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT. Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells. 2007;25(6):1402–9.

    Article  PubMed  Google Scholar 

  52. Gipson IK, Spurr-Michaud S, Tisdale A, Keough M. Reassembly of the anchoring structures of the corneal epithelium during wound repair in the rabbit. Invest Ophthalmol Vis Sci. 1989;30:425–34.

    CAS  PubMed  Google Scholar 

  53. Gipson IK. The epithelial basement membrane zone of the limbus. Eye. 1989;3:132–40.

    Article  PubMed  Google Scholar 

  54. Ljubimov AV, Burgeson RE, Butkowski RJ, Michael AF, Sun TT, Kenney MC. Human corneal basement memberane heterogeneity: topographical differences in the expression of type 4 collagen and laminin isoforms. Lab Invest. 1995;72:461–73.

    CAS  PubMed  Google Scholar 

  55. Kolega J, Manabe M, Sun TT. Basement membrane hetrogeneity and variation in corneal epithelial differentiation. Differentiation. 1989;42:54–63.

    Article  CAS  PubMed  Google Scholar 

  56. Li W, Hayashida Y, Chen YT, Tseng SC. Niche regulation of corneal epitheliam stem cells at the limbus. Cell Res. 2007;17(1):26–36.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mann I. A study of epithelial regeneration in the living eye. Br J Ophthalmol. 1944;28:26–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blazejewska EA, Schlötzer-Schrehardt U, Zenkel M, Bachmann B, Chankiewitz E, Jacobi C, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27:642–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mariappan I, Kacham S, Purushotham J, Maddileti S, Siamwala J, Sangwan VS. Spatialdistribution of niche and stem cells in ex vivo human limbal cultures. Stem Cells Transl Med. 2014;3(11):1331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thoft RA, Wiley LA, Sundarraj N. The multipotential cells of the limbus. Eye. 1989;3:109–13.

    Article  PubMed  Google Scholar 

  61. Dua HS. Stem cells of the ocular surface: scientific principles and clinical applications. Br J Ophthalmol. 1995;79:968–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li Y, Inoue T, Takamatsu F, Kobayashi T, Shiraishi A, Maeda N, et al. Differences between niche cells and limbal stromal cells in maintenance of corneal limbal stem cells. Invest Ophthalmol Vis Sci. 2014;55:1453–62.

    Article  CAS  PubMed  Google Scholar 

  63. Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SC. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods. 2011;17:537–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li GG, Zhu YT, Xie HT, Chen SY, Tseng SCG. Mesenchymal stem cells derived from human limbal niche cells. Invest Ophthalmol Vis Sci. 2012;53(9):5686-5679.

    Google Scholar 

  65. Espana EM, Kawakita T, Romano A, Di Pascuale M, Smiddy R, Liu CY, et al. Stromal niche controls the plasticity of limbal and corneal epithelial differentiation in a rabbit model of recombined tissue. Invest Ophthalmol Vis Sci. 2003;44:5130–5.

    Article  PubMed  Google Scholar 

  66. Bloomfield SE, Jakobiec FA, Theodore FH. Contact lens induced keratopathy: a severe complication extending the spectrum of keratoconjunctivitis in contact lens wearers. Ophthalmology. 1984;91:290–4.

    Article  CAS  PubMed  Google Scholar 

  67. Martin R. Corneal conjunctivalisation in long-standing contact lens wearers. Clin Exp Optom. 2007;90:26–30.

    Article  PubMed  Google Scholar 

  68. Jeng BH, Halfpenny CP, Meisler DM, Stock EL. Management of focal limbal stem cell deficiency associated with soft contact lens wear. Cornea. 2011;30:18–23.

    Article  PubMed  Google Scholar 

  69. D’Aversa G, Luchs JL, Fox MJ, Rosenbaum PS, Udell IJ. Advancing wave-like epitheliopathy. Clinical features and treatment. Ophthalmology. 1997;104:962–9.

    Article  PubMed  Google Scholar 

  70. Medical Advisory Secretariat. Limbal stem cell transplantation: an evidence-based analysis. Ontario Health Technol Assess Ser. 2008;8(7).

    Google Scholar 

  71. Avunduk AM, Tekelioglu Y. Therapeutic use of limbal stem cells. Curr Stem Cell Res Ther. 2006;1(2):231–8.

    Article  CAS  PubMed  Google Scholar 

  72. Amirjamshidi H, Milani BY, Sagha HM, Movahedan A, Shafiq MA, Lavker RM et al. Limbal fibroblast conditioned media: a non-invasive treatment for limbal stem cell deficiency. Mol Vis. 2011;8(17):658–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. Djalilian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Majdi, M., Wasielewski, L., Djalilian, A.R. (2015). Corneal Limbal Stem Cell Niche. In: Turksen, K. (eds) Tissue-Specific Stem Cell Niche. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21705-5_4

Download citation

Publish with us

Policies and ethics