Skip to main content

Tendon Stem Cell Niche

  • Chapter
  • First Online:
Tissue-Specific Stem Cell Niche

Abstract

Tendon stem cells constitute a heterogeneous population of stem and progenitor cells that is involved in tendon formation and healing. The basic understanding of the interactions between tendon cells and their surroundings can enable the development of improved regenerative therapies. In this chapter, the main characteristics of their microenvironment—niche —are reviewed. In particular, the importance of signaling molecules and extracellular matrix (ECM) are highlighted, focusing on their potential role in tendon regeneration.

The original version of this chapter was revised: The spelling of the first author’s name was corrected. The erratum to this chapter is available at DOI 10.1007/978-3-319-21705-5_14

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-21705-5_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-SMA:

Alpha smooth muscle actin

BMSCs:

Bone marrow-derived mesenchymal stem cells

CD:

Cluster of differentiation

COMP:

Collagen oligomeric matrix protein

Cx:

Connexin

ECM:

Extracellular matrix

Egr 1:

Early growth response 1 transcription factor

Egr 2:

Early growth response 2 transcription factor

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

GAGs:

Glycosaminoglycans

GDF-5:

Growth differentiation factor 5

GFs:

Growth factors

IGF:

Insulin-like growth factor

MHC-II:

Major histocompatibility complex II

Mkx:

Mohawk

MSCs:

Mesenchymal stem cells

PDGF-BB:

Platelet derived growth factor

PLs:

Platelet lysates

PGs:

Proteoglycans

PRP:

Platelet-rich plasma

Scx:

Scleraxis

TGF-β:

Transforming growth factor-beta

TDSCs:

Tendon-derived stem cells

TFs:

Transcription factors

References

  1. Gelse K, Poschl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55:1531–46.

    Article  CAS  PubMed  Google Scholar 

  2. Marturano JE, Arena JD, Schiller ZA, Georgakoudi I, Kuo CK. Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc Natl Acad Sci USA. 2013;110:6370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rodrigues MT, Reis RL, Gomes ME. Engineering tendon and ligament tissues: present developments towards successful clinical products. J Tissue Eng Regen Med. 2013;7(9):673–86.

    Article  CAS  PubMed  Google Scholar 

  4. Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, et al. Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development. 1995;121:1099–110.

    CAS  PubMed  Google Scholar 

  5. Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors Cell. 2003;113:235–48.

    CAS  PubMed  Google Scholar 

  6. Liu C-F, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. Tissue Eng Part B. 2011;17:165–76.

    Article  CAS  Google Scholar 

  7. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.

    Article  CAS  PubMed  Google Scholar 

  8. Rui Y-F, Lui PPY, Li G, Fu SC, Lee YW, Chan KM. Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A. 2010;16:1549–58.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J. Wang JH-C. Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord. 2011;11:10.

    Article  CAS  Google Scholar 

  10. Lovati A, Corradetti B, Consiglio AL, Recordati C, Bonacina E, Bizzaro D, et al. Characterization and differentiation of equine tendon-derived progenitor cells. J Biol Regul Homeost Agents. 2011;25(2 Suppl):S75–84.

    CAS  PubMed  Google Scholar 

  11. Lui PPY, Wong OT. Tendon stem cells: experimental and clinical perspectives in tendon and tendon-bone junction repair. Muscles, Ligaments Tendons J. 2012;2:163–8.

    Google Scholar 

  12. Tan Q, Lui PPY, Rui YF, Wong YM. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Eng Part A. 2012;18:840–51.

    Article  CAS  PubMed  Google Scholar 

  13. Mienaltowski MJ, Adams SM, Brik DE. Regional differences in stem cell/progenitor cell populations from the mouse Achilles tendon. Tissue Eng Part A. 2013;19:199–210.

    Article  CAS  PubMed  Google Scholar 

  14. Mienaltowski MJ, Adams SM, Brik DE. Tendon proper- and peritenon-derived progenitor cells have unique tenogenic properties. Stem Cell Res Ther. 2014;5:86.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yin Z, Chen X, Chen JL, Shen WL, Nguyen TMH, Gao L, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010;31:2163–75.

    Article  CAS  PubMed  Google Scholar 

  16. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441:1075–9.

    Article  CAS  PubMed  Google Scholar 

  17. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311:1880–5.

    Article  CAS  PubMed  Google Scholar 

  18. Spanoudes K, Gaspar D, Pandit A, Zeugolis DI. The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro. Trends Biotechnol. 2014;32:474–82.

    Article  CAS  PubMed  Google Scholar 

  19. Asou Y, Nifuji A, Tsuji K, Shinomiya K, Olson EN, Koopman P, et al. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res: official publication of the Orthopaedic Research Society. 2002;20(4):827–33.

    Article  CAS  Google Scholar 

  20. Blitz E, Sharir A, Akiyama H, Zelzer E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development. 2013;140:2680–90.

    Article  CAS  PubMed  Google Scholar 

  21. Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H. Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis. 2010 Nov;48(11):635–44. PubMed PMID: 20806356. Pubmed Central PMCID: 3982414.

    Google Scholar 

  22. Liu W, Watson SS, Lan Y, Keene DR, Ovitt CE, Liu H, et al. The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Mol Cell Biol. 2010 Oct;30(20):4797–807. PubMed PMID: 20696843. Pubmed Central PMCID: 2950547.

    Google Scholar 

  23. Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, et al. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci USA. 2010 Jun 8;107(23):10538–42. PubMed PMID: 20498044. Pubmed Central PMCID: 2890854.

    Google Scholar 

  24. Onizuka N, Ito Y, Inagawa M, Nakahara H, Takada S, Lotz M, et al. The Mohawk homeobox transcription factor regulates the differentiation of tendons and volar plates. J Orthop Sci: official journal of the Japanese Orthopaedic Association. 2014 Jan;19(1):172–80. PubMed PMID: 24166359. Pubmed Central PMCID: 3943675.

    Google Scholar 

  25. Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, et al. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci USA. 2010;107:10538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem. 2011 Feb 18;286(7):5855–67. PubMed PMID: 21173153. Pubmed Central PMCID: 3037698.

    Google Scholar 

  27. Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA, et al. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest. 2013 Aug 1;123(8):3564–76. PubMed PMID: 23863709. Pubmed Central PMCID: 4011025.

    Google Scholar 

  28. Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW. Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS ONE. 2014;9:e96113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA, Hurle JM. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem. 2009 Oct 23;284(43):29988–96. PubMed PMID: 19717568. Pubmed Central PMCID: 2785627.

    Google Scholar 

  30. Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dunker N, Schweitzer R. Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development. 2009 Apr;136(8):1351–61. PubMed PMID: 19304887. Pubmed Central PMCID: 2687466.

    Google Scholar 

  31. Liu C-F, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon. Tissue Eng Part A. 2012;18:598–608.

    Article  CAS  PubMed  Google Scholar 

  32. Brent AE, Braun T, Tabin CJ. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development. 2005;132(3):515–28.

    Article  CAS  PubMed  Google Scholar 

  33. Brent AE, Tabin CJ. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development. 2004;131(16):3885–96.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Wang JH-C. Human tendon stem cells better maintain their stemness in hypoxic culture conditions. PLoS ONE. 2013;8:e61424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holladay C, Abbah S-A, O’Dowd C, Pandit A, Zeugolis DI. Preferential tendon stem cell response to growth factor supplementation. J Tissue Eng Regen Med. 2014;. doi:10.1002/term.1852.

    PubMed  Google Scholar 

  36. Brown JP, Finley VG, Kuo CK. Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin. J Biomech. 2014;47:214–22.

    Article  PubMed  Google Scholar 

  37. Goncalves AI, Rodrigues MT, Lee SJ, Atala A, Yoo JJ, Reis RL, et al. Understanding the role of growth factors in modulating stem cell tenogenesis. PLoS ONE. 2013;8(12):e83734. PubMed PMID: 24386267. Pubmed Central PMCID: 3875481.

    Google Scholar 

  38. Park A, Hogan MV, Kesturu GS, James R, Balian G, Chhabra AB. Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Eng Part A. 2010;16:2941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Otabe K, Nakahara H, Hasegawa A, Matsukawa T, Ayabe F, Onizuka N, et al. Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Orthop Res: official publication of the Orthopaedic Research Society. 2014 Oct 13. PubMed PMID: 25312837.

    Google Scholar 

  40. Liu H, Zhang C, Zhu S, Lu P, Zhu T, Gong X, et al. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFbeta signaling pathway. Stem Cells. 2014 Oct 21. PubMed PMID: 25332192.

    Google Scholar 

  41. Braga VM, Balda MS. Regulation of cell-cell adhesion. Semin Cell Dev Biol. 2004;15:631–2.

    Article  CAS  PubMed  Google Scholar 

  42. Giepmans BNG. Gap junctions and connexin-interacting proteins. Cardiovasc Res. 2004;62:233–45.

    Article  CAS  PubMed  Google Scholar 

  43. Wagget AD, Benjamin M, Ralphs JR. Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur J Cell Biol. 2006;85:1145–54.

    Article  CAS  Google Scholar 

  44. McNeilly CM, Banes AJ, Benjamin M, Ralphs JR. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat. 1996;189:593–600.

    PubMed  PubMed Central  Google Scholar 

  45. Ralphs JR, Benjamin M, Wagget AD, Russel DC, Messner K, Gao J. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J Anat. 1998;193:215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stanley RL, Fleck RA, Becker DL, Goodship AE, Ralphs JR. Patterson-Kane JC. Gap junction protein expression and cellularity: comparison of immature and adult equine digital tendons. 2007;211:325–34.

    CAS  Google Scholar 

  47. Young NJ, Becker DL, Fleck RA, Goodship AE, Patterson-Kane JC. Maturational alterations in gap junction expression and associated collagen synthesis in response to tendon function. Matrix Biol. 2009;28:311–23.

    Article  CAS  PubMed  Google Scholar 

  48. Kuzma-Kuzniarska M, Yapp C, Pearson-Jones TW, Jones AK, Hulley PA. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching. J Biomed Opt. 2014;19:doi:10.1117/1.JBO.19.1.015001.

  49. Banes AJ, Weinhold P, Yang X, Tsuzaki M, Bynum D, Bottlang M, et al. Gap junctions regulate responses of tendon cells ex vivo to mechanical loading. Clin Orthop Relat Res. 1999;367S:S356–70.

    Article  Google Scholar 

  50. Wall ME, Banes AJ. Early responses to mechanical load in tendon: Role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact. 2005;5:70–84.

    CAS  PubMed  Google Scholar 

  51. Ralphs JR, Wagget AD, Benjamin M. Actin stress fibres and cell–cell adhesion molecules in tendons: organi- sation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biol. 2002;21:67–74.

    Article  CAS  PubMed  Google Scholar 

  52. Richardson SH, Starborg T, Lu Y, Humphries SM, Meadows RS, Kadler KE. Tendon development requires regulation of cell condensation and cell shape via cadherin-11-mediated cell-cell junctions. Mol Cell Biol. 2007;27:6218–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gurdon JB. A community effect in animal development. Nature. 1988;336:772–4.

    Article  CAS  PubMed  Google Scholar 

  54. Gurdon JB, Lemaire P, Kato K. Community effects and related phenomena in development. Cell. 1993;75:831–4.

    Article  CAS  PubMed  Google Scholar 

  55. Gurdon JB, Tiller E, Roberts J, Kato K. A community effect in muscle development. Curr Biol. 1993;3:1–11.

    Article  CAS  PubMed  Google Scholar 

  56. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5:17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adams JC. Cell-matrix contact structures. Cell Mol Life Sci. 2001;58:371–92.

    Article  CAS  PubMed  Google Scholar 

  58. Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. Structural basis of collagen recognition by integrin a2b1. Cell. 2000;101:47–56.

    Article  CAS  PubMed  Google Scholar 

  59. Knight CG, Morton LF, Peachey AR, Tuckwell DS, Farndale RW, Barnes MJ. The collagen-binding A-domains of integrins α1β1 and α2β1 recognise the same specific amino acid sequence, GFOGER, in native (triple- helical) collagens. J Biol Chem. 2000;275:35–40.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang W-M, Kapyla J, Puranen JS, Knight CG, Tiger C-F, Pentikainen OT, et al. α11β1 integrin recognizes the GFOGER sequence in interstitial collagens. J Biol Chem. 2003;278:7270–7.

    Article  CAS  PubMed  Google Scholar 

  61. Harwood FL, Monosov AZ, Goomer RS, Gelberman RH, Winters SC, Silva MJ, et al. Integrin expression is upregulated during early healing in a canine intrasynovial flexor tendon repair and controlled passive motion model. Connect Tissue Res. 1998;39:309–16.

    Article  CAS  PubMed  Google Scholar 

  62. Tarpila E, Ghassemifar RM, Franzen LE. Fibroblast movements during contraction of collagen lattices—a quantitative study using a new three-dimensional time-lapse technique with phase-contrast laser scanning microscopy. In Vitro Cell Dev Biol—Animal. 1998;34:640–5.

    Article  CAS  Google Scholar 

  63. Silver FH, Christiansen DL, Snowhill PB, Chen Y. Role of storage on changes in the mechanical properties of tendon and self-assembled collagen fibers. Connect Tissue Res. 2000;42:155–64.

    Article  Google Scholar 

  64. Silver FH, Christiansen DL, Snowhill PB, Chen Y. Transition from viscous to elastic dependency of mechanical properties of self-assembled collagen fibers. J Appl Polym Sci. 2001;7:134–42.

    Article  Google Scholar 

  65. Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M. Hierarchical structures in fibrillar collagens. Micron. 2002;33:587–96.

    Article  CAS  PubMed  Google Scholar 

  66. Ottani V, Raspanti M, Ruggeri A. Collagen structure and functional implications. Micron. 2001;32:251–60.

    Article  CAS  PubMed  Google Scholar 

  67. Hulmes DJ, Miller A. Molecular packing in collagen. Nature. 1981;293:234–9.

    Article  Google Scholar 

  68. Gelse K. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55:1531–46.

    Article  CAS  PubMed  Google Scholar 

  69. Silver FH, Christiansen DL. Introduction to biomaterials science and biocompatibility. In: Silver FH, Christiansen DL, editors. biomaterials science and biocompatibility. New York: Springer; 1999.

    Chapter  Google Scholar 

  70. Buehler MJ. Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J Mech Behav Biomed Mater. 2008;1:50–67.

    Article  Google Scholar 

  71. Parry DA, Barnes GR, Craig AS. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proceedings of the Royal Society B: Biological Sciences. 1978;203:305–21.

    Article  CAS  Google Scholar 

  72. Shadwick RE. Elastic energy storage in tendons: mechanical differences related to function and age. J Appl Physiol. 1990;68:1033–40.

    Article  CAS  PubMed  Google Scholar 

  73. Franchi M, Ottani V, Stagni R, Ruggeri A. Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps. J Anat. 2010;216:301–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Franchi M, Quaranta M, Macciocca M, Pasquale VD, Ottani V, Ruggeri A. Structure relates to elastic recoil and functional role in quadriceps tendon and patellar ligament. Micron. 2009;40:370–7.

    Article  PubMed  Google Scholar 

  75. Zaffagnini S, Muccioli GMM, Franchi M, Bacchelli B, Grassi A, Agati P, et al. Collagen fibre and fibril ultrastructural arrangement of the superficial medial collateral ligament in the human knee. Knee Surgery, Sports Traumatol Arthrosc. 2014;(in press).

    Google Scholar 

  76. Silver FH, Freeman JW, Bradica G. Structure and function of ligaments, tendons, and joint capsule. In: Walsh WR, editor. Repair and regeneration of ligaments, tendons, and joint capsule. New Jersey: Humana Press Inc.; 2005.

    Google Scholar 

  77. Wang JH. Mechanobiology of tendon. J Biomech. 2006;39:1563–82.

    Article  PubMed  Google Scholar 

  78. Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SL. Tensile and viscoelastic properties of human patellar tendon. J Orthop Res. 1994;12:796–803.

    Article  CAS  PubMed  Google Scholar 

  79. Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol. 1999;521:307–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Birch HL, Bailey AJ, Goodship AE. Macroscopic ‘degeneration’ of equine superficial digital flexor tendon is accompanied by a change in extracellular matrix composition. Equine Vet J. 1998;30:534–9.

    Article  CAS  PubMed  Google Scholar 

  81. Riechert K, Labs K, Lindenhayn K, Sinha P. Semiquantitative analysis of types I and III collagen form tendons and ligaments in a rabbit model. J Orthop Sci. 2001;6:68–74.

    Article  CAS  PubMed  Google Scholar 

  82. Graham HK, Holmes DF, Watson RB, Kadler KE. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen–proteoglycan interaction. J Mol Biol. 2000;295:891–902.

    Article  CAS  PubMed  Google Scholar 

  83. Fukuta S, Oyama M, Kavalkovich K, Fu FH, Niyibizi C. Identification of types II, IX and X collagens at the insertion site of the bovine achilles tendon. Matrix Biol. 1998;17:65–73.

    Article  CAS  PubMed  Google Scholar 

  84. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84:694–8.

    Article  Google Scholar 

  85. Engel J. Versatile collagens in invertebrates. Science. 1997;277:1785–6.

    Article  CAS  PubMed  Google Scholar 

  86. Silver FH, Birk DE. Molecular structure of collagen in solution: comparison of types I, II, III, and V. Int J Biol Macromol. 1984;6:125–32.

    Article  CAS  Google Scholar 

  87. Hofmann H, Voss T, Kühn K, Engel J. Localization of flexible sites in thread-like molecules from electron micrographs. Comparison of interstitial, basement membrane and intima collagens. J Mol Biol. 1984;172:325–43.

    Article  CAS  PubMed  Google Scholar 

  88. Paterlini MG, Némethy G, Scheraga HA. The energy of formation of internal loops in triple-helical collagen polypeptides. Biopolymers. 1995;35:607–19.

    Article  CAS  PubMed  Google Scholar 

  89. Berg RA, Birk DE, Silver FH. Physical characterization of type I procollagen in solution: Evidence that the propeptides limit self-assembly. Int J Biol Macromol. 1986;8:177–82.

    Article  CAS  Google Scholar 

  90. McAnulty RJ, Laurent GJ. Collagen synthesis and degradation in vivo. Evidence for rapid rates of collagen turnover with extensive degradation of newly synthesized collagen in tissues of the adult rat. Collagen Relat Res. 1987;7:93–104.

    Article  CAS  Google Scholar 

  91. Vuorio E, de Crombrugghe B. The family of collagen genes. Annu Rev Biochem. 1990;59:837–72.

    Article  CAS  PubMed  Google Scholar 

  92. Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol. 2003;22:15–24.

    Article  CAS  PubMed  Google Scholar 

  93. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84:649–98.

    Article  CAS  PubMed  Google Scholar 

  94. Prockop DJ, Sieron AL, Li SW. Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol. 1998;16:399–408.

    Article  CAS  PubMed  Google Scholar 

  95. Scott JE. The nomenclature of glycosaminoglycans and proteoglycans. Glycoconj J. 1993;10:419–21.

    Article  CAS  PubMed  Google Scholar 

  96. Iozzo RV, Murdoch AD. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 1996;10:598–614.

    CAS  PubMed  Google Scholar 

  97. Raspanti M, Congiu T, Guizzardi S. Structural aspects of the extracellular matrix of the tendon: an atomic force and scanning electron microscopy study. Arch Histol Cytol. 2002;65:37–43.

    Article  PubMed  Google Scholar 

  98. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997;10:729–43.

    Article  Google Scholar 

  99. Nakamura N, Hart DA, Boorman RS, Kaneda Y, Shrive NG, Marchuk LL, et al. Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J Orthop Res. 2000;18:517–23.

    Article  CAS  PubMed  Google Scholar 

  100. Scott JE. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry. 1996;35:8795–9.

    Article  CAS  PubMed  Google Scholar 

  101. Scott JE, Orford CR, Hughes EW. Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochemistry. 1996;35:8795–9.

    Article  CAS  PubMed  Google Scholar 

  102. Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, et al. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem. 1992;267:6132–6.

    CAS  PubMed  Google Scholar 

  103. Södersten F, Ekman S, Eloranta ML, Heinegård D, Dudhia J, Hultenby K. Ultrastructural immunolocalization of cartilage oligomeric matrix protein (COMP) in relation to collagen fibrils in the equine tendon. Matrix Biol. 2005;24:376–85.

    Article  PubMed  CAS  Google Scholar 

  104. Beredjiklian PK, Favata M, Cartmell JS, Flanagan CL, Crombleholme TM, Soslowsky LJ. Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Ann Biomed Eng. 2003;31:1143–52.

    Article  PubMed  Google Scholar 

  105. Herdrich BJ, Danzer E, Davey MG, Bermudez DM, Radu A, Zhang L, et al. Fetal tendon wound size modulates wound gene expression and subsequent wound phenotype. Wound Repair Regen. 2010;18:543–9.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans Roy Soc B: Biol Sci. 2004;359:839–50.

    Article  CAS  Google Scholar 

  107. Fenwick SA, Curry V, Harrall RL, Hazleman BL, Hackney R, Riley GP. Expression of transforming growth factor-beta isoforms and their receptors in chronic tendinosis. J Anat. 2001 Sep;199(Pt 3):231–40. PubMed PMID: 11554502. Pubmed Central PMCID: 1468327.

    Google Scholar 

  108. Chan KM, Fu SC, Wong YP, Hui WC, Cheuk YC, Wong MW. Expression of transforming growth factor beta isoforms and their roles in tendon healing. Wound Repair Regen: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2008 May–Jun;16(3):399–407. PubMed PMID: 18471258.

    Google Scholar 

  109. Hoppe S, Alini M, Benneker LM, Milz S, Boileau P, Zumstein MA. Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors. J Should Elbow Surg. 2013;22:340–9.

    Article  Google Scholar 

  110. Chen L, Dong S-W, Liu J-P, Tao X, Tang K-L, Xu J-Z. Synergy of tendon stem cells and platelet-rich plasma in tendon healing. J Orthop Res. 2012;30:991–7.

    Article  CAS  PubMed  Google Scholar 

  111. Fernandez-Sarmiento JA, Dominguez JM, Granados MM, Morgaz J, Navarrete R, Carrillo JM, et al. Histological study of the influence of plasma rich in growth factors (PRGF) on the healing of divided Achilles tendons in sheep. J Bone Joint Surg. 2013;95(3):246–55.

    Article  PubMed  Google Scholar 

  112. Liu C-F, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. Tissue Eng Part B. 2011;17:165–76.

    Article  CAS  Google Scholar 

  113. Lui PPY, Kong SK, Lau PM, Wong YM, Lee YW, Tan C, et al. Allogeneic tendon-derived stem cells promote tendon healing and suppress immunoreactions in hosts: in vivo model. Tissue Eng Part A. 2014:doi:10.1089/ten.TEA.2013.0713.

    Google Scholar 

  114. Lui PPY, Kong SK, Lau PM, Wong YM, Lee YW, Tan C, et al. Immunogenicity and escape mechanisms of allogeneic tendon-derived stem cells. Tissue Eng Part A. 2014:doi:10.1089/ten.TEA.2013.0714.

  115. Kuo CK, Tuan RS. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A. 2008;14:1615–27.

    Article  CAS  PubMed  Google Scholar 

  116. Yang G, Rothrauff BB, Lin H, Gottardi R, Alexander PG, Tuan RS. Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials. 2013;34:9295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fox PM, Farnebo S, Lindsey D, Chang J, Schmitt T, Chang J. Decellularized human tendon-bone grafts for composite flexor tendon reconstruction: a cadaveric model of initial mechanical properties. J Hand Surg. 2013;38:2323–8.

    Article  Google Scholar 

  118. Farnebo S, Woon CYL, Bronstein JA, Schmitt T, Lindsey DP, Pham H, et al. Decellularized tendon-bone composite grafts for extremity reconstruction: an experimental study. Plast Reconstr Surg. 2014;133:79–89.

    Article  CAS  PubMed  Google Scholar 

  119. Farnebo S, Woon CY, Kim M, Pham H, Chang J. Reconstruction of the tendon-bone insertion with decellularized tendon-bone composite grafts: comparison with conventional repair. J Hand Surg. 2014;39:65–74.

    Article  Google Scholar 

  120. Zhang J, Li B. Wang JH-C. The role of engineered tendon matrix in the stemness of tendon stem cells in vitro and the promotion of tendon-like tissue formation in vivo. Biomaterials. 2011;32:6972–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schiele NR, Marturano JE, Kuo CK. Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis. Curr Opin Biotechnol. 2013;24:834–40.

    Article  CAS  PubMed  Google Scholar 

  122. Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 2012;5:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Costa-Almeida, R., Gonçalves, A.I., Gershovich, P., Rodrigues, M.T., Reis, R.L., Gomes, M.E. (2015). Tendon Stem Cell Niche. In: Turksen, K. (eds) Tissue-Specific Stem Cell Niche. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21705-5_10

Download citation

Publish with us

Policies and ethics