Skip to main content

Stem Cell Niche-Radiobiological Response

  • Chapter
  • First Online:
Biology in Stem Cell Niche

Abstract

Ionizing radiation (IR) in the context of radiotherapy or unplanned exposure events results in a myriad of biological events with clinical outcomes that range in severity from DNA damage, local tissue damage, and even death. Radiation is widely utilized in medicine for imaging diagnostics, total body irradiation (TBI) in bone marrow (BM) transplantation and cancer therapy, and for the management of non-cancerous syndromes, including Dupuyten and Ledderhose disease (Halperin in Lancet Oncol 7(8):676–85, 2006; Seegenschmiedt and Attassi in Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft [et al] 179(12):847–853, 2003; Heyd et al. in Organ der Deutschen Rontgengesellschaft [et al] 186(1):24–29, 2010). To eradicate tumors, x-rays, gamma rays, or high-energy charged particle beams are emitted at malignant cells to induce DNA damage and death. The disadvantages associated with radiation therapy include damage to proximal healthy tissues and cell death. The blood forming system is highly sensitive to radiation with increasing risk of morbidity and mortality resulting from loss of white blood cells and platelets with the sequela of opportunistic infection and hemorrhage with increasing duration and intensity of exposure. Radiation therapy increases the risk of infertility, can cause joint and mouth (stoma) complications, and can result in lymphedema and cancer. Irradiation impairs osteogenesis causing cell cycle arrest, reduction of osteoblast proliferation and differentiation (although not initially), collagen and vascular suppression, increased sensitivity to apoptotic agents, osteoradionecrosis, bone demineralization, loss of trabecular connections, sclerosis, and destruction of a stem cell niche that contributes to maintenance of hematopoiesis [Hopewell in Med Pediatr Oncol 41(3):208–211, 2003). In this chapter, we will review what is known regarding the impact of radiation exposure on BM stromal cells that constitute microenvironments/niches that support blood cell production and an overview of hematopoietic stem cell (HSC) radioprotection and regeneration of the stem cell niche. We will outline the acute and late effects of irradiation on hematopoietic stem and progenitor cells leading to hematopoietic acute radiation syndrome (H-ARS) and residual bone marrow damage (RBMD), respectively. The interactive components of the stem cell niche respond to radiation distinctively by cell type and even by state of maturation, and influence the fate of one another. The reader will appreciate a greater understanding of the HSC niche, the radiobiological response as an interconnected symphony, and the therapeutic approach of HSC niche protection and regeneration.

David J. Olivos III and Rajendran Sellamuthu: Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-SMA:

α-smooth muscle actin

Akt:

Serine/threonine-protein kinase

ALP:

Alkaline phosphatase

Ang1:

Angiopoietin-1

ARE:

Anti-oxidant response element

Bak:

BCL-2-antagonist/killer 1

Bax:

BCL-2-like protein 4

bFGF:

Basic fibroblast growth factor

BFU-E:

Burst forming unit-erythroid

BM:

Bone marrow

CAR:

CXCL12-abundant reticular cells

CD:

Cluster of differentiation

CFU-E:

Colony forming unit-erythroid

CFU-F:

Colony-forming unit-fibroblast

CFU-GEMM:

Colony forming unit of granulocytes, erythrocytes, monocyte/macrophages, and megakaryocytes

CFU-GM:

Colony forming units of granulocytes and monocyte

c-Kit:

Cellular receptor-type tyrosine kinase

COX2:

Cyclooxygenase-2

CXCL12:

Chemokine (C-X-C motif) ligand 12

CXCR4:

C-X-C chemokine receptor type 4

DEARE:

Delayed effects of acute radiation exposure

DNA:

Deoxyribonucleic acid

DSB:

Double strand break

EPCs:

Endothelial progenitor cells

FGF:

Fibroblast growth factor

G-CSF:

Granulocyte colony-stimulating factor

GM-CSF:

Granulocyte-macrophage CSF

GSR:

Gluthathione reductase

Gy:

Gray

H-ARS:

Hematopoietic acute radiation syndrome

hFOB:

Human immortalized osteoblast

HO1:

Heme oxygenase-1

HPC:

Hematopoietic progenitor cell

HSC:

Hematopoietic stem cell

HSPC:

Hematopoietic stem progenitor cell

IGF-1:

Insulin-like growth factor-1

IL-6:

Interleukin-6

IR:

Ionizing radiation

KSL:

c-Kit + Sca-1 + Lin-

LD:

Lethal Dose

Lin-:

Lineage-negative

M-CSF:

Macrophage colony stimulating factor

MSC:

Mesenchymal stem cell

mTOR:

Mammalian target of rapamycin

NFκβ:

Nuclear factor kappa β

NK:

Natural killer cell

Nrf2:

Nuclear factor erythroid-2–related factor 2

Notch-IC:

Notch intercellular domain

OPG:

Osteoprotegerin

PDGF:

Platelet derived growth factor

PGE2 :

Prostaglandin E2

PI3K:

Phosphatidylinositol 3-kinase

PK:

Protein kinase

PRR:

Pattern recognition receptor

RANKL:

Receptor activator of nuclear kappa-B ligand

RBC:

Red blood cell

RBMD:

Residual bone marrow damage

RBP-Jk:

Recombination signal binding protein for immunoglobulin kappa J

REDD1:

Regulated in development and DNA damage response 1

ROS:

Reactive oxygen species

Runx2:

Runt-related transcription factor 2

Sca-1:

Stem cell antigen-1 positive

SCF:

Stem cell factor

SDF-1:

Stromal cell-derived factor 1

SSB:

Single strand break

TBI:

Total body irradiation

Tie2:

Tunica internal endothelial cell kinase 2

TLR:

Toll like receptor

TMC:

Trifluoromethyl-2’-methocychalone

TPO:

Thrombopoietin

TRAP:

Tartrate-resistant acid phosphatase

TXNRD1:

Thiordoxin reductase 1

VCAM-1:

Vascular cell adhesion molecule-1

VE-Cadherin:

Vascular endothelial-cadherin

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor 2

References

  1. Halperin EC. Particle therapy and treatment of cancer. Lancet Oncol. 2006;7(8):676–85.

    Article  CAS  PubMed  Google Scholar 

  2. Seegenschmiedt MH, Attassi M. Radiation therapy for Morbus Ledderhose—indication and clinical results. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft [et al]. 2003;179(12):847–53.

    Article  Google Scholar 

  3. Heyd R, Dorn AP, Herkstroter M, Rodel C, Muller-Schimpfle M, Fraunholz I. Radiation therapy for early stages of morbus Ledderhose. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al]. 2010;186(1):24–9.

    Article  Google Scholar 

  4. Hopewell JW. Radiation-therapy effects on bone density. Med Pediatr Oncol. 2003;41(3):208–11.

    Article  PubMed  Google Scholar 

  5. Rompolas P, Greco V. Stem cell dynamics in the hair follicle niche. Semin Cell Dev Biol. 2014;25–26:34–42.

    Article  PubMed  Google Scholar 

  6. Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Reviews. 2006;2(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  7. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112(9):3543–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dainiak N. Hematologic consequences of exposure to ionizing radiation. Exp Hematol. 2002;30(6):513–28.

    Article  CAS  PubMed  Google Scholar 

  10. Belkacemi Y, Bouchet S, Frick J, Huchet A, Pene F, Aigueperse J, et al. Monitoring of residual hematopoiesis after total body irradiation in humans as a model for accidental x-ray exposure: dose-effect and failure of ex vivo expansion of residual stem cells in view of autografting. Int J Radiat Oncol Biol Phys. 2003;57(2):500–7.

    Article  PubMed  Google Scholar 

  11. Inoue T, Hirabayashi Y, Mitsui H, Sasaki H, Cronkite EP, Bullis JE Jr, et al. Survival of spleen colony-forming units (CFU-S) of irradiated bone marrow cells in mice: evidence for the existence of a radioresistant subfraction. Exp Hematol. 1995;23(12):1296–300.

    CAS  PubMed  Google Scholar 

  12. McCulloch EA, Till JE. The sensitivity of cells from normal mouse bone marrow to gamma radiation in vitro and in vivo. Radiat Res. 1962;16:822–32.

    Article  CAS  PubMed  Google Scholar 

  13. van Bekkum DW. Radiation sensitivity of the hemopoietic stem cell. Radiat Res. 1991;128(1 Suppl):S4–8.

    Article  PubMed  Google Scholar 

  14. Down JD, Boudewijn A, van Os R, Thames HD, Ploemacher RE. Variations in radiation sensitivity and repair among different hematopoietic stem cell subsets following fractionated irradiation. Blood. 1995;86(1):122–7.

    CAS  PubMed  Google Scholar 

  15. Imai Y, Nakao I. In vivo radiosensitivity and recovery pattern of the hematopoietic precursor cells and stem cells in mouse bone marrow. Exp Hematol. 1987;15(8):890–5.

    CAS  PubMed  Google Scholar 

  16. Peslak SA, Wenger J, Bemis JC, Kingsley PD, Koniski AD, McGrath KE, et al. EPO-mediated expansion of late-stage erythroid progenitors in the bone marrow initiates recovery from sublethal radiation stress. Blood. 2012;120(12):2501–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Simonnet AJ, Nehme J, Vaigot P, Barroca V, Leboulch P. Tronik-Le Roux D. Phenotypic and functional changes induced in hematopoietic stem/progenitor cells after gamma-ray radiation exposure. Stem Cells. 2009;27(6):1400–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kajioka EH, Andres ML, Li J, Mao XW, Moyers MF, Nelson GA, et al. Acute effects of whole-body proton irradiation on the immune system of the mouse. Radiat Res. 2000;153(5 Pt 1):587–94.

    Article  CAS  PubMed  Google Scholar 

  19. Plett PA, Sampson CH, Chua HL, Joshi M, Booth C, Gough A, et al. Establishing a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 2012;103(4):343–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chua HL, Plett PA, Sampson CH, Joshi M, Tabbey R, Katz BP, et al. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 2012;103(4):356–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chua HL, Plett PA, Sampson CH, Katz BP, Carnathan GW, MacVittie TJ, et al. Survival efficacy of the PEGylated G-CSFs Maxy-G34 and neulasta in a mouse model of lethal H-ARS, and residual bone marrow damage in treated survivors. Health Phys. 2014;106(1):21–38.

    Article  CAS  PubMed  Google Scholar 

  22. Hirabayashi Y. Radiation-induced, cell cycle-related gene expression in aging hematopoietic stem cells: enigma of their recovery. Ann N Y Acad Sci. 2014;1310:69–73.

    Article  CAS  PubMed  Google Scholar 

  23. Shao L, Feng W, Li H, Gardner D, Luo Y, Wang Y, et al. Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner. Blood. 2014;123(20):3105–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Botnick LE, Hannon EC, Hellman S. A long lasting proliferative defect in the hematopoietic stem cell compartment following cytotoxic agents. Int J Radiat Oncol Biol Phys. 1979;5(9):1621–5.

    Article  CAS  PubMed  Google Scholar 

  25. Grande T, Bueren JA. Involvement of the bone marrow stroma in the residual hematopoietic damage induced by irradiation of adult and young mice. Exp Hematol. 1994;22(13):1283–7.

    CAS  PubMed  Google Scholar 

  26. Mauch P, Rosenblatt M, Hellman S. Permanent loss in stem cell self renewal capacity following stress to the marrow. Blood. 1988;72(4):1193–6.

    CAS  PubMed  Google Scholar 

  27. Meng A, Wang Y, Brown SA, Van Zant G, Zhou D. Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and -independent mechanisms. Exp Hematol. 2003;31(12):1348–56.

    Article  CAS  PubMed  Google Scholar 

  28. Nikkels PG, de Jong JP, Ploemacher RE. Radiation sensitivity of hemopoietic stroma: long-term partial recovery of hemopoietic stromal damage in mice treated during growth. Radiat Res. 1987;109(2):330–41.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood. 2006;107(1):358–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wang Y, Liu L, Pazhanisamy SK, Li H, Meng A, Zhou D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic Biol Med. 2010;48(2):348–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Arai F, Hirao A, Suda T. Regulation of hematopoietic stem cells by the niche. Trends Cardiovasc Med. 2005;15(2):75–9.

    Article  CAS  PubMed  Google Scholar 

  32. Greenberger JS. Toxic effects on the hematopoietic microenvironment. Exp Hematol. 1991;19(11):1101–9.

    CAS  PubMed  Google Scholar 

  33. Hosokawa K, Arai F, Yoshihara H, Nakamura Y, Gomei Y, Iwasaki H, et al. Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem Biophys Res Commun. 2007;363(3):578–83.

    Article  CAS  PubMed  Google Scholar 

  34. Kato K, Takahashi K, Monzen S, Yamamoto H, Maruyama A, Itoh K, et al. Relationship between radiosensitivity and Nrf2 target gene expression in human hematopoietic stem cells. Radiat Res. 2010;174(2):177–84.

    Article  CAS  PubMed  Google Scholar 

  35. Merchant AA, Singh A, Matsui W, Biswal S. The redox-sensitive transcription factor Nrf2 regulates murine hematopoietic stem cell survival independently of ROS levels. Blood. 2011;118(25):6572–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Tsai JJ, Dudakov JA, Takahashi K, Shieh JH, Velardi E, Holland AM, et al. Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol. 2013;15(3):309–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. King KY, Goodell MA. Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol. 2011;11(10):685–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F, et al. A sense of danger from radiation. Radiat Res. 2004;162(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  39. Burberry A, Zeng MY, Ding L, Wicks I, Inohara N, Morrison SJ, et al. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling. Cell Host Microbe. 2014;15(6):779–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006;24(6):801–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q, et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol. 2011;186(9):5367–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhao JL, Ma C, O’Connell RM, Mehta A, DiLoreto R, Heath JR, et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell. 2014;14(4):445–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Scumpia PO, Kelly-Scumpia KM, Delano MJ, Weinstein JS, Cuenca AG, Al-Quran S, et al. Cutting edge: bacterial infection induces hematopoietic stem and progenitor cell expansion in the absence of TLR signaling. J Immunol. 2010;184(5):2247–51.

    Article  CAS  PubMed  Google Scholar 

  44. Oduro KA Jr, Liu F, Tan Q, Kim CK, Lubman O, Fremont D, et al. Myeloid skewing in murine autoimmune arthritis occurs in hematopoietic stem and primitive progenitor cells. Blood. 2012;120(11):2203–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011;12(10):643–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Hanoun M, Frenette PS. This niche is a maze; an amazing niche. Cell Stem Cell. 2013;12(4):391–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–6.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang J, Li L. 25-year mystery unveiled: Hematopoietic stem cell niche is found. Discov Med. 2003;3(19):55–8.

    PubMed  Google Scholar 

  50. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, et al. Bone marrow CD169 + macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208(2):261–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6.

    Article  CAS  PubMed  Google Scholar 

  54. Arranz L, Sanchez-Aguilera A, Martin-Perez D, Isern J, Langa X, Tzankov A, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512(7512):78–81.

    CAS  PubMed  Google Scholar 

  55. Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci USA. 2011;108(4):1609–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis ResTher. 2007;9(1):204.

    Google Scholar 

  57. Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S, et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol. 1999;27(9):1460–6.

    Article  CAS  PubMed  Google Scholar 

  58. Tauchmanova L, Serio B, Del PA, Risitano AM, Esposito A, De RG, et al. Long-lasting bone damage detected by dual-energy x-ray absorptiometry, phalangeal osteosonogrammetry, and in vitro growth of marrow stromal cells after allogeneic stem cell transplantation. J Clin Endocrinol Metab. 2002;87(11):5058–65.

    Article  CAS  PubMed  Google Scholar 

  59. Hu KX, Sun QY, Guo M, Ai HS. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury. Br J Radiol. 2010;83(985):52–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Shim S, Lee SB, Lee JG, Jang WS, Lee SJ, Park S, et al. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation. Exp Hematol. 2013;41(4):346–53.

    Article  CAS  PubMed  Google Scholar 

  61. Clarke B. Normal bone anatomy and physiology. Clinical journal of the American Society of Nephrology: CJASN. 2008;3(Suppl 3):S131–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011;12(10):643–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–41.

    Article  CAS  PubMed  Google Scholar 

  64. Yang B, Tang Q, Post J, Zhou H, Huang XB, Zhang XD, et al. Effect of radiation on the Notch signaling pathway in osteoblasts. Int J Mol Med. 2013;31(3):698–706.

    CAS  PubMed  Google Scholar 

  65. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Sugimura R, Li L. Shifting in balance between osteogenesis and adipogenesis substantially influences hematopoiesis. J Mol Cell Biol. 2010;2(2):61–2.

    Article  CAS  PubMed  Google Scholar 

  67. Dominici M, Rasini V, Bussolari R, Chen X, Hofmann TJ, Spano C, et al. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood. 2009;114(11):2333–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Turner RT, Iwaniec UT, Wong CP, Lindenmaier LB, Wagner LA, Branscum AJ, et al. Acute exposure to high dose gamma-radiation results in transient activation of bone lining cells. Bone. 2013;57(1):164–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Heazlewood SY, Neaves RJ, Williams B, Haylock DN, Adams TE, Nilsson SK. Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res. 2013;11(2):782–92.

    Article  CAS  PubMed  Google Scholar 

  71. Ebbe S, Phalen E, Yee T. Postirradiation thrombocytopoiesis: suppression, recovery, compensatory states, and macromegakaryocytosis. Prog Clin Biol Res. 1986;215:71–89.

    CAS  PubMed  Google Scholar 

  72. Kacena MA, Shivdasani RA, Wilson K, Xi Y, Troiano N, Nazarian A, et al. Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Min Res Off J Am Soc Bone Min Res. 2004;19(4):652–60.

    Article  CAS  Google Scholar 

  73. Kacena MA, Nelson T, Clough ME, Lee SK, Lorenzo JA, Gundberg CM, et al. Megakaryocyte-mediated inhibition of osteoclast development. Bone. 2006;39(5):991–9.

    Article  CAS  PubMed  Google Scholar 

  74. Kacena MA, Eleniste PP, Cheng YH, Huang S, Shivanna M, Meijome TE, et al. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts. J Biol Chem. 2012;287(21):17257–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Ciovacco WA, Cheng YH, Horowitz MC, Kacena MA. Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation. J Cell Biochem. 2010;109(4):774–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Cheng YH, Hooker RA, Nguyen K, Gerard-O’Riley R, Waning DL, Chitteti BR, et al. Pyk2 regulates megakaryocyte-induced increases in osteoblast number and bone formation. J Bone Min Res Off J Am Soc Bone Min Res. 2013;28(6):1434–45.

    Article  CAS  Google Scholar 

  77. Cheng YH, Streicher DA, Waning DL, Chitteti BR, Gerard-O’Riley R, Horowitz MC, et al. Signaling pathways involved in megakaryocyte-mediated proliferation of osteoblast lineage cells. J Cell Physiol. 2015;230(3):578–86.

    Article  CAS  PubMed  Google Scholar 

  78. Thon JN. SDF-1 directs megakaryocyte relocation. Blood. 2014;124(2):161–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Niswander LM, Fegan KH, Kingsley PD, McGrath KE, Palis J. SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood. 2014;124(2):277–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Olson TS, Caselli A, Otsuru S, Hofmann TJ, Williams R, Paolucci P, et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood. 2013;121(26):5238–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Drouet M, Mathieu J, Grenier N, Multon E, Sotto JJ, Herodin F. The reduction of in vitro radiation-induced Fas-related apoptosis in CD34 + progenitor cells by SCF, FLT-3 ligand, TPO, and IL-3 in combination resulted in CD34 + cell proliferation and differentiation. Stem Cells. 1999;17(5):273–85.

    Article  CAS  PubMed  Google Scholar 

  82. Li XH, Ha CT, Fu D, Xiao M. REDD1 protects osteoblast cells from gamma radiation-induced premature senescence. PLoS ONE. 2012;7(5):e36604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Nobta M, Tsukazaki T, Shibata Y, Xin C, Moriishi T, Sakano S, et al. Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1 signaling. J Biol Chem. 2005;280(16):15842–8.

    Article  CAS  PubMed  Google Scholar 

  84. Ann EJ, Kim HY, Choi YH, Kim MY, Mo JS, Jung J, et al. Inhibition of Notch1 signaling by Runx2 during osteoblast differentiation. Journal Bone Min Res Off J Am Soc Bone Min Res. 2011;26(2):317–30.

    Article  CAS  Google Scholar 

  85. Cheng YH, Chitteti BR, Streicher DA, Morgan JA, Rodriguez-Rodriguez S, Carlesso N, et al. Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Min Res Off J Am Soc Bone Min Res. 2011;26(5):1111–21.

    Article  CAS  Google Scholar 

  86. Chitteti BR, Cheng YH, Poteat B, Rodriguez-Rodriguez S, Goebel WS, Carlesso N, et al. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood. 2010;115(16):3239–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Chitteti BR, Cheng YH, Kacena MA, Srour EF. Hierarchical organization of osteoblasts reveals the significant role of CD166 in hematopoietic stem cell maintenance and function. Bone. 2013;54(1):58–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43.

    Article  CAS  PubMed  Google Scholar 

  89. Yao L, Yokota T, Xia L, Kincade PW, McEver RP. Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood. 2005;106(13):4093–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Poulos MG, Guo P, Kofler NM, Pinho S, Gutkin MC, Tikhonova A, et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 2013;4(5):1022–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Doan PL, Himburg HA, Helms K, Russell JL, Fixsen E, Quarmyne M, et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med. 2013;19(3):295–304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell. 2009;4(3):263–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18(11):1651–7.

    Article  CAS  PubMed  Google Scholar 

  94. Kobayashi H, Butler JM, O’Donnell R, Kobayashi M, Ding BS, Bonner B, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2010;12(11):1046–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Doan PL, Russell JL, Himburg HA, Helms K, Harris JR, Lucas J, et al. Tie2(+) bone marrow endothelial cells regulate hematopoietic stem cell regeneration following radiation injury. Stem Cells. 2013;31(2):327–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Lee MO, Song SH, Jung S, Hur S, Asahara T, Kim H, et al. Effect of ionizing radiation induced damage of endothelial progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol. 2012;32(2):343–52.

    Article  CAS  PubMed  Google Scholar 

  97. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med. 2011;208(2):251–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116(23):4815–28.

    Article  CAS  PubMed  Google Scholar 

  99. Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K, et al. Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol. 2012;13(11):1072–82.

    Article  CAS  PubMed  Google Scholar 

  100. Willey JS, Lloyd SA, Nelson GA, Bateman TA. Ionizing radiation and bone loss: space exploration and clinical therapy applications. Clin Rev Bone Min Metab. 2011;9(1):54–62.

    Article  CAS  Google Scholar 

  101. Yang B, Zhou H, Zhang XD, Liu Z, Fan FY, Sun YM. Effect of radiation on the expression of osteoclast marker genes in RAW264.7 cells. Mol Med Rep. 2012;5(4):955–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Clutton SM, Townsend KM, Walker C, Ansell JD, Wright EG. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis. 1996;17(8):1633–9.

    Article  CAS  PubMed  Google Scholar 

  103. Umegaki K, Aoki S, Esashi T. Whole body X-ray irradiation to mice decreases ascorbic acid concentration in bone marrow: comparison between ascorbic acid and vitamin E. Free Radic Biol Med. 1995;19(4):493–7.

    Article  CAS  PubMed  Google Scholar 

  104. Umegaki K, Ichikawa T. Decrease in vitamin E levels in the bone marrow of mice receiving whole-body X-ray irradiation. Free Radic Biol Med. 1994;17(5):439–44.

    Article  CAS  PubMed  Google Scholar 

  105. Wambi C, Sanzari J, Wan XS, Nuth M, Davis J, Ko YH, et al. Dietary antioxidants protect hematopoietic cells and improve animal survival after total-body irradiation. Radiat Res. 2008;169(4):384–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Kwak HJ, Lee SJ, Lee YH, Ryu CH, Koh KN, Choi HY, et al. Angiopoietin-1 inhibits irradiation- and mannitol-induced apoptosis in endothelial cells. Circulation. 2000;101(19):2317–24.

    Article  CAS  PubMed  Google Scholar 

  107. de LB, Pawlikowska P, Petit-Cocault L, Bilhou-Nabera C, Aubin-Houzelstein G, Souyri M, et al. Thrombopoietin-increased DNA-PK-dependent DNA repair limits hematopoietic stem and progenitor cell mutagenesis in response to DNA damage. Cell Stem Cell. 2013;12(1):37–48.

    Google Scholar 

  108. Gu Q, Wang D, Wang X, Peng R, Liu J, Jiang T, et al. Basic fibroblast growth factor inhibits radiation-induced apoptosis of HUVECs. I. The PI3 K/AKT pathway and induction of phosphorylation of BAD. Radiat Res. 2004;161(6):692–702.

    Google Scholar 

  109. Kopp HG, Avecilla ST, Hooper AT, Shmelkov SV, Ramos CA, Zhang F, et al. Tie2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood. 2005;106(2):505–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Kim JH, Thimmulappa RK, Kumar V, Cui W, Kumar S, Kombairaju P, et al. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J Clin Invest. 2014;124(2):730–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Caselli A, Olson TS, Otsuru S, Chen X, Hofmann TJ, Nah HD, et al. IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells. 2013;31(10):2193–204.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIA R01AG046246 (LMP, MAK, CMO), NIAMS AR060332 (MAK), HL096305 (LMP), NIAID 1U01AI107340 (CMO), NIAID HSN266200500043C (CMO), and NIAID HHSN272201000046C (CMO), the Indiana Center for Excellence in Molecular Hematology (NIDDK P30 DK090948), and a postdoctoral NIH T32 Training Grant in Hematopoiesis, T32 4689736 (DJO). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa A. Kacena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olivos III, D.J. et al. (2015). Stem Cell Niche-Radiobiological Response. In: Turksen, K. (eds) Biology in Stem Cell Niche. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21702-4_5

Download citation

Publish with us

Policies and ethics