Skip to main content

What Makes a Transcriptional Master Regulator? A Systems Biology Approach

  • Conference paper
Physical Biology of Proteins and Peptides

Abstract

Gene regulatory networks present a wide variety of dynamical responses to intrinsic and extrinsic perturbations. An outstanding case of such coordinated responses is that of transcriptional amplification cascades, in which activation of a few key-responsive transcription factors (termed master regulators) leads to a large series of transcriptional activation events. Recent studies have pointed to the protein called myocyte enhancing factor 2C (MEF2C) as being one of such master regulators involved in the pathogenesis of primary breast cancer. A systems biology analysis of the transcriptional regulation activity of MEF2C and its target genes, has revealed that this molecule induces collective responses leading to system-level gene expression deregulation and carcinogenesis. We found extensive evidence for this. Being this the case, one may wonder what set of physicochemical, structural and thermodynamic constrains need to be satisfied if a protein is to become a transcription factor, and moreover a master regulator? Some hints will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Affara M, Sanders D, Araki H, Tamada Y, Dunmore BJ, Humphreys S, Imoto S, Savoie C, Miyano S, Kuhara S, Jeffries D, Print C, Charnock-Jones DS (2013) Vasohibin-1 is identified as a master-regulator of endothelial cell apoptosis using gene network analysis. BMC Genomics 14:23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Álvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martínez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97(10):5328–5333

    Article  PubMed Central  PubMed  Google Scholar 

  3. Arnold P, Erb I, Pachkov M, MOlina N, van Nimwegen E (2012) MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Bioinformatics 28(4):487–494

    Article  CAS  PubMed  Google Scholar 

  4. Baca-López K, Hidalgo-Miranda A, Mayorga M, Gutiérrez-Nájera N, Hernández-Lemus E (2012) The role of master regulators in the metabolic/transcriptional coupling in breast carcinomas. PLoS ONE. doi:10.1371/journal.pone.0042678

    PubMed Central  PubMed  Google Scholar 

  5. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37(4):382–390

    Article  CAS  PubMed  Google Scholar 

  6. Brosh R, Rotter V (2010) Transcriptional control of the proliferation cluster by the tumor suppressor p53. Mol Biosyst 6(1):17–29

    Article  CAS  PubMed  Google Scholar 

  7. Fukuda K (2002) Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells. Congenit Anom 42(1):1–9

    Article  CAS  Google Scholar 

  8. Hernández-Lemus E (2009) Non-equilibrium thermodynamics of gene expression and transcriptional regulation. J Non-Equilib Thermodyn 34(4):371–394

    Google Scholar 

  9. Hernández-Lemus E, Velázquez-Fernández D, Estrada-Gil JK, Silva-Zolezzi I, Herrera-Hernández MF, Jiménez-Sánchez G (2009) Information theoretical methods to deconvolute genetic regulatory networks applied to thyroid neoplasms. Phys A 388:5057–5069

    Article  Google Scholar 

  10. Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M, Vuerhard M, Buijs-Gladdines, J, Kooi C, Klous P, van Vlierberghe P, Ferrando AA, Cayuela JM, Verhaaf B, Beverloo HB, Horstmann M, de Haas V, Wiekmeijer AS, Pike-Overzet K, Staal FJ, de Laat W, Soulier J, Sigaux F, Meijerink JP (2011) Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 19(4):484–497

    Article  CAS  PubMed  Google Scholar 

  12. Hosking R (2012) mTOR: the master regulator. Cell 149:955–957

    Article  Google Scholar 

  13. Janulis, M, Trakul N, Greene G, Schaefer EM, Lee JD, Rosner MR (2001) A novel mitogen-activated protein kinase is responsive to Raf and mediates growth factor specificity. Mol Cell Biol 21(6):2235–2247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kato Y, Kravchenko VV, Tapping RI, Han J, Ulevitch RJ, Lee JD (1997) BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 16(23):7054–7066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kato Y, Zhao M, Morikawa A, Sugiyama T, Chakravortty D, Koide N, Yoshida T, Tapping RI, Yang Y, Yokochi T, Lee JD (2000) Big mitogen-activated kinase regulates multiple members of the MEF2 protein family. J Biol Chem 275(24):18534–18540

    Article  CAS  PubMed  Google Scholar 

  16. Linnell J, Mott R, Field S, Kwiatkowski DP, Ragoussis J, Udalova IA (2004) Quantitative high-throughput analysis of transcription factor binding specificities. Nucleic Acids Res 32:4

    Article  Google Scholar 

  17. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla FR, Califano A (2006) ARACNe: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf 7(Suppl I S7):1–15

    Google Scholar 

  18. Medvedovic J, Ebert A, Tagoh H, Busslinger M (2011) Pax5: a master regulator of B cell development and leukemogenesis. Adv Immunol 111:179–206

    Article  CAS  PubMed  Google Scholar 

  19. Molkentin JD, Olson EN (1996) Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA 93(18):9366–9373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nagel S, Meyer C, Quentmeier H, Kaufmann M, Drexler HG, MacLeod RA (2008) MEF2C is activated by multiple mechanisms in a subset of T-acute lymphoblastic leukemia cell lines. Leukemia 22(3):600–607

    Article  CAS  PubMed  Google Scholar 

  21. Novitch BG, Spicer DB, Kim PS, Cheung WL, Lassar AB (1999) pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr Biol 9(9):449–459

    Article  CAS  PubMed  Google Scholar 

  22. Nowakowska BA, Obersztyn E, Szyman’ska K, Bekiesin’ska-Figatowska M, Xia Z, Ricks CB, Bocian E, Stockton DW, Szczauba K, Nawara M, Patel A, Scott DA, Cheung SW, Bohan TP, Stankiewicz P (2010) Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C. Am J Med Genet B Neuropsychiatr Genet 153B(5):1042–1051

    CAS  PubMed  Google Scholar 

  23. Poizat C, Sartorelli V, Chung G, Kloner RA, Kedes L (2000) Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription. Mol Cell Biol 20(23):8643–8654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Potthoff MJ, Olson EN (2007) MEF2: a central regulator of diverse developmental programs. Development 134(23):4131–4140

    Article  CAS  PubMed  Google Scholar 

  25. Sartorelli V, Huang J, Hamamori Y, Kedes L (1997) Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 17(2):1010–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Smeding L, Leong-Poi H, Hu P, Shan Y, Haitsma JJ, Horvath E, Furmli S, Masoom H, Kuiper JW, Slutsky AS, Parker TG, Plotz FB, dos Santos CC (2012) Salutary effect of resveratrol on sepsis-induced myocardial depression. Crit Care Med 40(6):1896–1907

    Article  CAS  PubMed  Google Scholar 

  27. Stormo GD (2000) DNA binding sites: representation and discovery. Bioinformatics 16:16–23

    Article  CAS  PubMed  Google Scholar 

  28. Subramanian A, Tamayo P, Mootha KV, Mukherjee S, Ebert BL, Gillette MA, Paulovichg A, Pomeroyh SL, Golub TR, Landera ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sun W, Wei X, Kesavan K, Garrington TP, Fan R, Mei J, Anderson SM, Gelfand EW, Johnson GL (2003) MEK kinase 2 and the adaptor protein Lad regulate extracellular signal-regulated kinase 5 activation by epidermal growth factor via Src. Mol Cell Biol 23(7):2298–2308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th’ng J, Han J, Yang XJ (1999) HDAC4, a Human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol 19(11):7816–7827

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Wang AH, Yang XJ (2001) Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol Cell Biol 21(17):5992–6005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Whitfield TW, Wang J, Collins PJ, Partridge EC, Aldred SF, Trinklein ND, Myers RM, Weng Z (2012) Functional analysis of transcription factor binding sites in human promoters. Genome Biol 13:R50

    Article  PubMed Central  PubMed  Google Scholar 

  33. Xu J, Cao S, Wang L, Xu R, Chen G, Xu Q (2011) VEGF promotes the transcription of the human PRL-3 gene in HUVEC through transcription factor MEF2C. PLoS ONE 6:11

    Google Scholar 

  34. Yang CC, Ornatsky OI, McDermott JC, Cruz TF, Prody CA (1998) Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res 26(20):4771–4777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACyT (Grant 179431/2012) as well as federal funding from the National Institute of Genomic Medicine (Mexico). Additional support from the National Laboratory of Complexity Sciences is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Hernández-Lemus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hernández-Lemus, E., Baca-López, K., Tovar, H. (2015). What Makes a Transcriptional Master Regulator? A Systems Biology Approach. In: Olivares-Quiroz, L., Guzmán-López, O., Jardón-Valadez, H. (eds) Physical Biology of Proteins and Peptides. Springer, Cham. https://doi.org/10.1007/978-3-319-21687-4_10

Download citation

Publish with us

Policies and ethics