Skip to main content
  • 1289 Accesses

Abstract

Our DNA is continuously assaulted from a plethora of sides including exogenous environmental sources (for examples ionizing radiation (IR) or exposure to environmental genotoxic compounds) and endogenous sources such as replication fork collapse during regular DNA replication, during normal DNA repair events and immunoglobulin V(D)J gene rearrangement. However the incorrect repair of DNA breaks results in significant genomic instability due to gross chromosomal loss, amplification, or rearrangements that can lead to cancer. In healthy cells, these harmful effects are controlled by large, multi-component protein complexes, beginning with the detection of DNA damage and the induction of complex protein signalling cascades that ensure genomic integrity. These signalling cascades promote cell cycle arrest, allowing the cell sufficient time to evaluate and where possible to repair the DNA damage. In the presence of sustained damage or when this damage cannot be repaired, the cell can instigate an apoptotic response (programmed cell death) to ensure that the damaged DNA is not passed to daughter cells, thus preserving genome integrity. In cancer, these processes are subverted, deregulated and inactivated. Over the course of this chapter the processes, key proteins and pathways involved in the cell cycle, DNA repair and apoptosis will be reviewed with particular focus on disease, in particular cancer and how these components could be therapeutically targeted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gopinathan L, Ratnacaram CK, Kaldis P (2011) Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl Cell Differ 53:365–389

    Article  PubMed  CAS  Google Scholar 

  2. Valerie K, Povirk LF (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22:5792–5812

    Article  PubMed  CAS  Google Scholar 

  3. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  PubMed  CAS  Google Scholar 

  4. van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    Article  PubMed  Google Scholar 

  5. Chen S, Inamdar KV, Pfeiffer P, Feldmann E, Hannah MF, Yu Y, Lee JW, Zhou T, Lees-Miller SP, Povirk LF (2001) Accurate in vitro end joining of a DNA double strand break with partially cohesive 3′-overhangs and 3′-phosphoglycolate termini: effect of Ku on repair fidelity. J Biol Chem 276:24323–24330

    Article  PubMed  CAS  Google Scholar 

  6. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379

    Article  PubMed  CAS  Google Scholar 

  7. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–5508

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Essers J, van Steeg H, de Wit J, Swagemakers SM, Vermeij M, Hoeijmakers JH, Kanaar R (2000) Homologous and non-homologous recombination differentially affect DNA damage repair in mice. EMBO J 19:1703–1710

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23:394–398

    Article  PubMed  CAS  Google Scholar 

  10. Smith GC, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13:916–934

    Article  PubMed  CAS  Google Scholar 

  11. Yoo S, Dynan WS (1999) Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res 27:4679–4686

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Hammarsten O, Chu G (1998) DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc Natl Acad Sci U S A 95:525–530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Singleton BK, Torres-Arzayus MI, Rottinghaus ST, Taccioli GE, Jeggo PA (1999) The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol Cell Biol 19:3267–3277

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Gell D, Jackson SP (1999) Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res 27:3494–3502

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. DeFazio LG, Stansel RM, Griffith JD, Chu G (2002) Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 21:3192–3200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Cary RB, Peterson SR, Wang J, Bear DG, Bradbury EM, Chen DJ (1997) DNA looping by Ku and the DNA-dependent protein kinase. Proc Natl Acad Sci U S A 94:4267–4272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Calsou P, Delteil C, Frit P, Drouet J, Salles B (2003) Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J Mol Biol 326:93–103

    Article  PubMed  CAS  Google Scholar 

  18. Hsu HL, Yannone SM, Chen DJ (2002) Defining interactions between DNA-PK and ligase IV/XRCC4. DNA Repair (Amst) 1:225–235

    Article  CAS  Google Scholar 

  19. Lee JW, Yannone SM, Chen DJ, Povirk LF (2003) Requirement for XRCC4 and DNA ligase IV in alignment-based gap filling for nonhomologous DNA end joining in vitro. Cancer Res 63:22–24

    PubMed  CAS  Google Scholar 

  20. Modesti M, Hesse JE, Gellert M (1999) DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J 18:2008–2018

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Nick McElhinny SA, Snowden CM, McCarville J, Ramsden DA (2000) Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol 20:2996–3003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Mahajan KN, Nick McElhinny SA, Mitchell BS, Ramsden DA (2002) Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol Cell Biol 22:5194–5202

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Matsumoto Y, Suzuki N, Namba N, Umeda N, Ma XJ, Morita A, Tomita M, Enomoto A, Serizawa S, Hirano K et al (2000) Cleavage and phosphorylation of XRCC4 protein induced by X-irradiation. FEBS Lett 478:67–71

    Article  PubMed  CAS  Google Scholar 

  24. Leber R, Wise TW, Mizuta R, Meek K (1998) The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J Biol Chem 273:1794–1801

    Article  PubMed  CAS  Google Scholar 

  25. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495

    Article  PubMed  CAS  Google Scholar 

  26. Yannone SM, Roy S, Chan DW, Murphy MB, Huang S, Campisi J, Chen DJ (2001) Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J Biol Chem 276:38242–38248

    PubMed  CAS  Google Scholar 

  27. Yannone SM, Khan IS, Zhou RZ, Zhou T, Valerie K, Povirk LF (2008) Coordinate 5′ and 3′ endonucleolytic trimming of terminally blocked blunt DNA double-strand break ends by Artemis nuclease and DNA-dependent protein kinase. Nucleic Acids Res 36:3354–3365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794

    Article  PubMed  CAS  Google Scholar 

  29. Niewolik D, Pannicke U, Lu H, Ma Y, Wang LC, Kulesza P, Zandi E, Lieber MR, Schwarz K (2006) DNA-PKcs dependence of Artemis endonucleolytic activity, differences between hairpins and 5′ or 3′ overhangs. J Biol Chem 281:33900–33909

    Article  PubMed  CAS  Google Scholar 

  30. Weterings E, Verkaik NS, Keijzers G, Florea BI, Wang SY, Ortega LG, Uematsu N, Chen DJ, van Gent DC (2009) The Ku80 carboxy terminus stimulates joining and artemis-mediated processing of DNA ends. Mol Cell Biol 29:1134–1142

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Smith GR (2004) How homologous recombination is initiated: unexpected evidence for single-strand nicks from v(d)j site-specific recombination. Cell 117:146–148

    Article  PubMed  CAS  Google Scholar 

  32. Jung D, Alt FW (2004) Unraveling V(D)J recombination; insights into gene regulation. Cell 116:299–311

    Article  PubMed  CAS  Google Scholar 

  33. Bogue MA, Jhappan C, Roth DB (1998) Analysis of variable (diversity) joining recombination in DNAdependent protein kinase (DNA-PK)-deficient mice reveals DNA-PK-independent pathways for both signal and coding joint formation. Proc Natl Acad Sci U S A 95:15559–15564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Gilley D, Tanaka H, Hande MP, Kurimasa A, Li GC, Oshimura M, Chen DJ (2001) DNA-PKcs is critical for telomere capping. Proc Natl Acad Sci U S A 98:15084–15088

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1:244–252

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Goytisolo FA, Samper E, Edmonson S, Taccioli GE, Blasco MA (2001) The absence of the dna-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 21:3642–3651

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. d’Adda di Fagagna F, Tong WM, Roth D, Lansdorp PM, Wang ZQ, Jackson SP (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11:1192–1196

    Article  PubMed  Google Scholar 

  38. Bailey SM, Meyne J, Chen DJ, Kurimasa A, Li GC, Lehnert BE, Goodwin EH (1999) DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci U S A 96:14899–14904

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17:1819–1828

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Gravel S, Larrivee M, Labrecque P, Wellinger RJ (1998) Yeast Ku as a regulator of chromosomal DNA end structure. Science 280:741–744

    Article  PubMed  CAS  Google Scholar 

  41. Hsu HL, Gilley D, Blackburn EH, Chen DJ (1999) Ku is associated with the telomere in mammals. Proc Natl Acad Sci U S A 96:12454–12458

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Bianchi A, de Lange T (1999) Ku binds telomeric DNA in vitro. J Biol Chem 274:21223–21227

    Article  PubMed  CAS  Google Scholar 

  43. Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH, Li GC, Campisi J, Kohwi-Shigematsu T, Chen DJ (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14:2807–2812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Espejel S, Franco S, Sgura A, Gae D, Bailey SM, Taccioli GE, Blasco MA (2002) Functional interaction between DNA-PKcs and telomerase in telomere length maintenance. EMBO J 21:6275–6287

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Shin DS, Chahwan C, Huffman JL, Tainer JA (2004) Structure and function of the double-strand break repair machinery. DNA Repair (Amst) 3:863–873

    Article  CAS  Google Scholar 

  46. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  47. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  PubMed  CAS  Google Scholar 

  48. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Batchelor E, Loewer A, Lahav G (2009) The ups and downs of p53: understanding protein dynamics in single cells. Nat Rev Cancer 9:371–377

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7:195–201

    Article  PubMed  CAS  Google Scholar 

  51. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166

    Article  PubMed  CAS  Google Scholar 

  52. Chipuk JE, Green DR (2003) p53′s believe it or not: lessons on transcription-independent death. J Clin Immunol 23:355–361

    Article  PubMed  CAS  Google Scholar 

  53. Fuster JJ, Sanz-Gonzalez SM, Moll UM, Andres V (2007) Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 13:192–199

    Article  PubMed  CAS  Google Scholar 

  54. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711

    Article  PubMed  CAS  Google Scholar 

  55. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  56. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  PubMed  CAS  Google Scholar 

  57. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  58. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219

    Article  PubMed  CAS  Google Scholar 

  59. McLure KG, Lee PW (1998) How p53 binds DNA as a tetramer. EMBO J 17:3342–3350

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Aylon Y, Oren M (2007) Living with p53, dying of p53. Cell 130:597–600

    Article  PubMed  CAS  Google Scholar 

  61. Das S, Boswell SA, Aaronson SA, Lee SW (2008) P53 promoter selection: choosing between life and death. Cell Cycle 7:154–157

    Article  PubMed  CAS  Google Scholar 

  62. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  CAS  Google Scholar 

  63. von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP (2005) Human cell senescence as a DNA damage response. Mech Ageing Dev 126:111–117

    Article  CAS  Google Scholar 

  64. Jack MT, Woo RA, Hirao A, Cheung A, Mak TW, Lee PW (2002) Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response. Proc Natl Acad Sci U S A 99:9825–9829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Jack MT, Woo RA, Motoyama N, Takai H, Lee PW (2004) DNA-dependent protein kinase and checkpoint kinase 2 synergistically activate a latent population of p53 upon DNA damage. J Biol Chem 279:15269–15273

    Article  PubMed  CAS  Google Scholar 

  66. Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E, Anderson CW (1992) Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12:5041–5049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Hill R, Leidal AM, Madureira PA, Gillis LD, Cochrane HK, Waisman DM, Chiu A, Lee PW (2008) Hypersensitivity to chromium-induced DNA damage correlates with constitutive deregulation of upstream p53 kinases in p21-/- HCT116 colon cancer cells. DNA Repair (Amst) 7:239–252

    Article  CAS  Google Scholar 

  68. Hill R, Leidal AM, Madureira PA, Gillis LD, Waisman DM, Chiu A, Lee PW (2008) Chromium-mediated apoptosis: Involvement of DNA-dependent protein kinase (DNA-PK) and differential induction of p53 target genes. DNA Repair (Amst) 7:1484

    Article  CAS  Google Scholar 

  69. Komiyama S, Taniguchi S, Matsumoto Y, Tsunoda E, Ohto T, Suzuki Y, Yin HL, Tomita M, Enomoto A, Morita A et al (2004) Potentiality of DNA-dependent protein kinase to phosphorylate Ser46 of human p53. Biochem Biophys Res Commun 323:816–822

    Article  PubMed  CAS  Google Scholar 

  70. Rathmell WK, Kaufmann WK, Hurt JC, Byrd LL, Chu G (1997) DNA-dependent protein kinase is not required for accumulation of p53 or cell cycle arrest after DNA damage. Cancer Res 57:68–74

    PubMed  CAS  Google Scholar 

  71. Huang LC, Clarkin KC, Wahl GM (1996) p53-dependent cell cycle arrests are preserved in DNA-activated protein kinase-deficient mouse fibroblasts. Cancer Res 56:2940–2944

    PubMed  CAS  Google Scholar 

  72. Gurley KE, Kemp CJ (1996) p53 induction, cell cycle checkpoints, and apoptosis in DNAPK-deficient scid mice. Carcinogenesis 17:2537–2542

    Article  PubMed  CAS  Google Scholar 

  73. Guidos CJ, Williams CJ, Grandal I, Knowles G, Huang MT, Danska JS (1996) V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev 10:2038–2054

    Article  PubMed  CAS  Google Scholar 

  74. Kachnic LA, Wu B, Wunsch H, Mekeel KL, DeFrank JS, Tang W, Powell SN (1999) The ability of p53 to activate downstream genes p21(WAF1/cip1) and MDM2, and cell cycle arrest following DNA damage is delayed and attenuated in scid cells deficient in the DNA-dependent protein kinase. J Biol Chem 274:13111–13117

    Article  PubMed  CAS  Google Scholar 

  75. Woo RA, McLure KG, Lees-Miller SP, Rancourt DE, Lee PW (1998) DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature 394:700–704

    Article  PubMed  CAS  Google Scholar 

  76. Jimenez GS, Bryntesson F, Torres-Arzayus MI, Priestley A, Beeche M, Saito S, Sakaguchi K, Appella E, Jeggo PA, Taccioli GE et al (1999) DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature 400:81–83

    Article  PubMed  CAS  Google Scholar 

  77. Bharti A, Kraeft SK, Gounder M, Pandey P, Jin S, Yuan ZM, Lees-Miller SP, Weichselbaum R, Weaver D, Chen LB et al (1998) Inactivation of DNA-dependent protein kinase by protein kinase Cdelta: implications for apoptosis. Mol Cell Biol 18:6719–6728

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Wang S, Guo M, Ouyang H, Li X, Cordon-Cardo C, Kurimasa A, Chen DJ, Fuks Z, Ling CC, Li GC (2000) The catalytic subunit of DNA-dependent protein kinase selectively regulates p53-dependent apoptosis but not cell-cycle arrest. Proc Natl Acad Sci U S A 97:1584–1588

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Woo RA, Jack MT, Xu Y, Burma S, Chen DJ, Lee PW (2002) DNA damage-induced apoptosis requires the DNA-dependent protein kinase, and is mediated by the latent population of p53. EMBO J 21:3000–3008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Achanta G, Pelicano H, Feng L, Plunkett W, Huang P (2001) Interaction of p53 and DNA-PK in response to nucleoside analogues: potential role as a sensor complex for DNA damage. Cancer Res 61:8723–8729

    PubMed  CAS  Google Scholar 

  81. Hill R, Madureira PA, Waisman DM, Lee PW (2011) DNA-PKCS binding to p53 on the p21WAF1/CIP1 promoter blocks transcription resulting in cell death. Oncotarget 2:1094–1108

    Article  PubMed Central  PubMed  Google Scholar 

  82. Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173:195–206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F, Soddu S (2007) MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 25:739–750

    Article  PubMed  CAS  Google Scholar 

  84. Mukherjee B, Kessinger C, Kobayashi J, Chen BP, Chen DJ, Chatterjee A, Burma S (2006) DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA Repair (Amst) 5:575–590

    Article  CAS  Google Scholar 

  85. Sluss HK, Davis RJ (2006) H2AX is a target of the JNK signaling pathway that is required for apoptotic DNA fragmentation. Mol Cell 23:152–153

    Article  PubMed  CAS  Google Scholar 

  86. Skalka AM (2013) HIV: integration triggers death. Nature 498:305–306

    Article  PubMed  CAS  Google Scholar 

  87. Cooper A, Garcia M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ (2013) HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature 498:376–379

    Article  PubMed  CAS  Google Scholar 

  88. Yang CR, Leskov K, Hosley-Eberlein K, Criswell T, Pink JJ, Kinsella TJ, Boothman DA (2000) Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci U S A 97:5907–5912

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Liu J, Naegele JR, Lin SL (2009) The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation. Brain Res 1296:164

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Espejel S, Franco S, Rodriguez-Perales S, Bouffler SD, Cigudosa JC, Blasco MA (2002) Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 21:2207–2219

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Lee HW, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574

    Article  PubMed  CAS  Google Scholar 

  92. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079–3093

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hill B.Sc, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hill, R. (2015). Apoptosis. In: de Mello, R., Tavares, Á., Mountzios, G. (eds) International Manual of Oncology Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-21683-6_3

Download citation

Publish with us

Policies and ethics